Adaptive Multi-Scale Contrast Enhancement and Morphological Flow Integration for Diabetic Retinopathy Detection Using ELM-Based Classifier
DOI:
https://doi.org/10.56294/dm20251220Keywords:
diabetic retinopathy, adaptive preprocessing, morphological feature extraction, extreme learning machines, Bayesian optimization, multi-channel processingAbstract
Introduction: Diabetic retinopathy affects 100 million individuals worldwide and represents a leading preventable cause of vision loss. Automated screening systems demonstrate suboptimal performance due to heterogeneous imaging conditions and insufficient preprocessing strategies. This study aimed to develop an integrated artificial intelligence pipeline that combines adaptive preprocessing, morphological feature extraction, and optimized classification methods for robust diabetic retinopathy severity assessment.
Methods: The research employed the preprocessed "Diabetic Retinopathy Arranged" dataset from Kaggle platform containing 34,860 fundus images across five severity grades. Three methodological innovations were implemented: Adaptive Multi-Scale Contrast Limited Adaptive Histogram Equalization (AMS-CLAHE) for content-aware preprocessing, Morphological Transition Flow architecture for structural change modeling, and Bayesian optimization for Extreme Learning Machine variants. Comprehensive ablation studies evaluated preprocessing configurations, architectural components, and classification strategies through systematic parameter optimization.
Results: The study proposes an AMS-CLAHE framework with dynamic threshold calibration and entropy-based attention mechanisms for content-aware preprocessing, achieving F1-score of 0.908 and AUC-ROC of 0.986 with processing efficiency below 250ms per image. The All-ELM configuration demonstrated superior performance (F1=0.970, accuracy=0.970) compared to conventional architectures. LAB color space processing outperformed RGB representation. Bayesian-optimized Random Forest delivered optimal classification results (F1=0.997, MCC=0.996) across all severity grades.
Conclusions: The integrated pipeline demonstrated that systematic preprocessing optimization enables competitive diagnostic accuracy while maintaining computational efficiency. This approach facilitates scalable diabetic retinopathy screening implementation in diverse clinical environments where expert assessment remains limited.
References
1. International Diabetes Federation. IDF Diabetes Atlas, 11th edition. Brussels, Belgium: International Diabetes Federation; 2025.
2. Faiyazuddin M, Rabbani N, Ahmad A, Khan A, Mustafa G, Shahid M, et al. The Impact of Artificial Intelligence on Healthcare: A Comprehensive Review of Advancements in Diagnostics, Treatment, and Operational Efficiency. Health Sci Rep. 2025;8(1):e70312.
3. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580-1591.
4. Yang Q, Bee YM, Lim CC, Sabanayagam C, Cheung CYL, Wong TY, et al. Use of artificial intelligence with retinal imaging in screening for diabetes-associated complications: systematic review. EClinicalMedicine. 2025;68:103089.
5. Cooper OAE, Taylor DJ, Crabb DP, Sim DA, McBain H. Psychological, social and everyday visual impact of diabetic macular oedema and diabetic retinopathy: a systematic review. Diabet Med. 2020;37(6):924-933.
6. Yan AP, Guo LL, Inoue J, Arciniegas SE, Vettese E, Wolochacz A, et al. A roadmap to implementing machine learning in healthcare: from concept to practice. Front Digit Health. 2025;7:1462751.
7. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy: a multisite, prospective, validation study. Lancet Digit Health. 2019;1(1):e35-e44.
8. Virgili G, Menchini F, Casazza G, Hogg R, Das RR, Wang X, Michelessi M. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev. 2015;1:CD008081.
9. Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. 2018;67:30-55.
10. Chen X, Wang X, Zhang K, Fung KM, Thai TC, Moore K, et al. Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal. 2022;79:102444.
11. Zhou HY, Yu Y, Wang C, Zhang S, Gao Y, Pan J, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nat Biomed Eng. 2023;7(6):743-755.
12. Vahdati S, Khosravi B, Mahmoudi E, Zhang K, Li J, Wang X, et al. A Guideline for Open-Source Tools to Make Medical Imaging Data Ready for Artificial Intelligence Applications: A Society of Imaging Informatics in Medicine (SIIM) Survey. J Imaging Inform Med. 2024;37(5):2015-2024.
13. Patel A, Shah R, Kumar S, Singh M. Evaluating pre-processing and deep learning methods in medical imaging: Combined effectiveness across multiple modalities. Alex Eng J. 2025;124:265-272.
14. Chen T, Li Y, Zhang X. MWRD (Mamba Wavelet Reverse Diffusion)—An Efficient Fundus Image Enhancement Network Based on an Improved State-Space Model. Electronics. 2024;13(20):4025.
15. Kumar T, Brennan R, Mileo A, Bendechache M. Image Data Augmentation Approaches: A Comprehensive Survey and Future Directions. IEEE Access. 2024;12:187536-187571.
16. Liu X, Karagoz G, Meratnia N. Analyzing the Impact of Data Augmentation on the Explainability of Deep Learning-Based Medical Image Classification. Mach Learn Knowl Extr. 2025;7(1):1.
17. Nahiduzzaman M, Islam MR, Hassan R. Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and ELM classifier. Expert Syst Appl. 2023;217:119557.
18. Gao Y, Che X, Xu H, Bie M. An enhanced feature extraction network for medical image segmentation. Appl Sci. 2023;13(12):6977.
19. Elhusseiny AM, Schwartz SG, Flynn HW Jr, Smiddy WE. Long-term outcomes after vitrectomy for proliferative diabetic retinopathy. Ophthalmol Retina. 2020;4(11):1080-1088.
20. Alhassan M, Mustapha A, Mohammed M. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689.
21. Amanneo. Diabetic Retinopathy Resized Arranged [Dataset]. Kaggle; 2024 [cité le 27 Sep 2025]. Disponible sur : https://www.kaggle.com/datasets/amanneo/diabetic-retinopathy-resized-arrangedZuiderveld
22. K. Contrast limited adaptive histogram equalization. In: Heckbert PS, editor. Graphics Gems IV. Boston: AP Professional; 1994. p. 474-85.
23. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al. Adaptive histogram equalization and its variations. Comput Vision Graph Image Process. 1987;39(3):355-68.
24. Soille P. Morphological image analysis: principles and applications. Berlin: Springer-Verlag; 1999.
25. Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol. 2004;38(1):35-44.
26. Serra J. Image analysis and mathematical morphology. Vol. 1. London: Academic Press; 1982.
27. Beucher S, Lantuéjoul C. Use of watersheds in contour detection. In: Proceedings of the International Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation; 1979; Rennes, France. p. 2.1-2.12.
28. Evans AN, Liu XU. A morphological gradient approach to color edge detection. IEEE Trans Image Process. 2006;15(6):1454-63.
29. Anand ER, Davidson OQ, Lee CS, Lee AY. Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness. Diabetes Care. 2023;46(10):1728-39.
30. Uy H, Fielding C, Hohlfeld A, Ochodo E, Opare A, Mukonda E, et al. Diagnostic test accuracy of artificial intelligence in screening for referable diabetic retinopathy in real-world settings: A systematic review and meta-analysis. PLOS Glob Public Health. 2023;3(9):e0002160.
31. Yoshimi Y, Mine Y, Ito S, Takeda S, Okazaki S, Nakamoto T, et al. Image preprocessing with contrast-limited adaptive histogram equalization improves the segmentation performance of deep learning for the articular disk of the temporomandibular joint on magnetic resonance images. Oral Surg Oral Med Oral Pathol Oral Radiol. 2024;138(1):128-41.
32. Zhang S, Yang W, Li J, Amini AA, Banerjee I. Enhancing semantic segmentation in chest X-ray images through image preprocessing: ps-KDE for pixel-wise substitution by kernel density estimation. PLOS One. 2024;19(6):e0299623.
33. Scanzera AC, Beversluis C, Potharazu AV, Bai P, Leifer A, Cole E, et al. Planning an artificial intelligence diabetic retinopathy screening program: a human-centered design approach. Front Med. 2023;10:1198228.
34. Driban M, Yan A, Selvam A, Ong J, Vupparaboina K, Chhablani J. Artificial intelligence in chorioretinal pathology through fundoscopy: a comprehensive review. Int J Retina Vitreous. 2024;10(1):1-15.
35. Zhang Q, Wang H, Lu H, Won D, Yoon SW. A comprehensive review of extreme learning machine on medical imaging. Neurocomputing. 2023;556:328-45.
36. Vincent AM, Jidesh P. An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms. Sci Rep. 2023;13:4737.
37. Teoh C, Wong K, Xiao D, Wong H, Zhao P, Chan H, et al. Variability in grading diabetic retinopathy using retinal photography and its comparison with an automated deep learning diabetic retinopathy screening software. Healthcare. 2023;11(12):1697.
38. Gao W, Fan B, Fang Y, Song N. Lightweight and multi-lesion segmentation model for diabetic retinopathy based on the fusion of mixed attention and ghost feature mapping. Comput Biol Med. 2024;169:107854.
39. Yang K, Liu L, Wen Y. The impact of Bayesian optimization on feature selection. Sci Rep. 2024;14:3948.
40. Chi W, Liu H, Dong H, Liang W, Liu B. Alleviating Hyperparameter-Tuning Burden in SVM Classifiers for Pulmonary Nodules Diagnosis with Multi-Task Bayesian Optimization. arXiv preprint arXiv:2411.06184. 2024.
41. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH. Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization. J Electronic Sci Technol. 2019;17(1):26-40.
42. Aktas S, Dimitriadis T, Hess S, Palma P. A review of AutoML optimization techniques for medical image applications. Comput Med Imaging Graph. 2024;118:102441.
43. Bohmrah MK, Kaur H. Advanced Hybridization and Optimization of DNNs for Medical Imaging: A Survey on Disease Detection Techniques. Artif Intell Rev. 2025;58(2):122.
44. Zhang D, Islam MM, Lu G. A review on automatic image annotation techniques. Pattern Recognit. 2012;45(1):346-62.
45. Galbusera F, Cina A. Image annotation and curation in radiology: An overview for machine learning practitioners. Eur Radiol Exp. 2024;8:11.
46. Marcinkeviĉs R, Vogt JE. Interpretable and explainable machine learning: A methods-centric overview with concrete examples. Wiley Interdiscip Rev Data Min Knowl Discov. 2023;13(4):e1493.
47. Xu M, Zhang Q, Huang A, Li C, Kui X, Liu Y. The application of artificial intelligence in diabetic retinopathy: progress and prospects. Front Cell Dev Biol. 2024;12:1473176.
48. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy: a multisite, prospective, validation study. Lancet Digit Health. 2019;1(1):e35-e44.
49. Chen S, Bai W. Artificial intelligence technology in ophthalmology public health: current applications and future directions. Front Cell Dev Biol. 2025;13:1576465.
50. Riotto E, Gasser S, Potić J, Sherif M, Stappler T, Schlingemann R, et al. Accuracy of autonomous artificial intelligence-based diabetic retinopathy screening in real-life clinical practice. J Clin Med. 2024;13(16):4776.
51. Faiyazuddin M, Rabbani N, Ahmad A, Khan A, Mustafa G, Shahid M, et al. The Impact of Artificial Intelligence on Healthcare: A Comprehensive Review of Advancements in Diagnostics, Treatment, and Operational Efficiency. Health Sci Rep. 2025;8(1):e70312.
52. Meredith S, Grinsven M, Engelberts J, Clarke D, Prior V, Vodrey J, et al. Performance of an artificial intelligence automated system for diabetic eye screening in a large english population. Diabet Med. 2023;40(6):e15055.
53. Thanikachalam V, Kabilan K, Erramchetty SK. Optimized deep CNN for detection and classification of diabetic retinopathy and diabetic macular edema. BMC Med Imaging. 2024;24:227.
54. Sendak MP, Gao M, Brajer N, Balu S. Machine learning in health care: a critical appraisal of challenges and opportunities. eGEMs. 2019;7(1):1.
55. Mirza MW, Siddiq A, Khan IR. A comparative study of medical image enhancement algorithms and quality assessment metrics on covid-19 Ct images. Signal Image Video Process. 2023;17(3):915-24.
56. Benmeziane H, Hamzaoui I, Cherif Z, El Maghraoui K. Medical Neural Architecture Search: A Comprehensive Survey. Artif Intell Med. 2024;149:102781.
57. Rauf F, Ahmad T, Aslam M, Gillani SA, Rashid J, Tahir MA, et al. Automated deep bottleneck residual 82-layered architecture with Bayesian optimization for the classification of brain and common maternal fetal ultrasound planes. Front Med. 2023;10:1330218.
58. Mall PK, Singh PK, Yadav D. A comprehensive review of deep neural networks for medical image processing: recent developments and future opportunities. Healthc Anal. 2023;4:100216.
59. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
60. Li Q. Implementation of a new, mobile diabetic retinopathy screening model incorporating artificial intelligence in remote western australia. Aust J Rural Health. 2025;33(2):70031.
61. Dave D, Sawhney G. Revolutionizing diabetic retinopathy diagnosis in third world countries: the transformative potential of smartphone-based ai. TechRxiv. 2023;24601953.
62. Zhou HY, Yu Y, Wang C, Zhang S, Gao Y, Pan J, et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nat Biomed Eng. 2023;7(6):743-55.
63. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203-11.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basma Esserkassi, Zaynab Boujelb, Souad Eddarouich, Abdennaser Bourouhou (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.

