Financial predictors of sme failure: variable selection with lasso versus random forest
DOI:
https://doi.org/10.56294/dm20261289Keywords:
Prediction SME failure, Variable selection, Financial ratios, LASSO regression, Random ForestAbstract
Introduction: The study aimed to identify the financial variables that best predicted the failure of small and medium-sized enterprises (SMEs). It addressed the need for reliable financial indicators capable of signaling early distress and supporting risk-management practices.
Methods: A quantitative methodology was adopted within a hypothetico-deductive framework. Two complementary variable-selection techniques were applied. First, the LASSO regression method introduced a regularization constraint to eliminate variables with weak explanatory power. Second, the Random Forest algorithm assessed the relative importance of financial variables in overall model performance. The two approaches were compared to determine their effectiveness in identifying the most relevant predictors of SME failure.
Results: The LASSO model produced a negative coefficient of determination (R² = –1.2179), demonstrating performance inferior to a simple mean-based prediction and indicating that LASSO was not suitable in this context. In contrast, the Random Forest model achieved a very high R² value (0.9571), reflecting strong predictive accuracy and robustness. Based on the Random Forest results, six key financial predictors of SME failure were identified: financial structure, return on assets, return on sales, return on equity, liquidity, and solvency.
Conclusions: The study demonstrated that Random Forest outperformed LASSO in selecting meaningful financial predictors of SME failure. The six identified variables offered a reliable analytical framework for understanding and anticipating financial distress. These findings provided valuable insights for academic research and practical applications in risk assessment and early warning systems for SMEs.
References
1. Altman EI; 1968. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance; 23:589-609. https://doi.org/10.2307/2978933 DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
2. Altman EI; 1984. The success of business failure prediction models: an international survey. Journal of Banking and Finance; 8(2):171-198. https://doi.org/10.1016/0378-4266(84)90003-7 DOI: https://doi.org/10.1016/0378-4266(84)90003-7
3. Altman EI, Iwanicz-Drozdowska M, Laitinen EK, Suvas A; 2017. Financial distress prediction in an international context: A review and empirical analysis of Altman's Z-score model. Journal of International Financial Management & Accounting; 28:131-171. https://doi.org/10.1111/jifm.12053 DOI: https://doi.org/10.1111/jifm.12053
4. Argenti J; 1976. Corporate Collapse: The Causes and Symptoms. Holsted Press, McGraw-Hill, London. https://doi.org/10.12691/ijbrm-2-1-4
5. Back B, Laitinen T, Sere K, van Wezel M; 1996. Choosing bankruptcy predictors using discriminant analysis, logit analysis, and genetic algorithms. Turku Centre for Computer Science Technical Report; 40:1-18. https://doi.org/10.1016/S0957-4174(96)00055-3 DOI: https://doi.org/10.1016/S0957-4174(96)00055-3
6. Baldwin CY, Mason SP; 1983. [Titre manquant]. American Finance Association; 38(2):505-516. https://doi.org/10.2307/2327985 DOI: https://doi.org/10.1111/j.1540-6261.1983.tb02258.x
7. Baldwin JR; 1998. Les faillites d'entreprise au Canada.
8. Baldwin R; 1989. Measurable Dynamic Gains from Trade. National Bureau of Economic Research Working Paper No. 3147. https://doi.org/10.3386/w3147 DOI: https://doi.org/10.3386/w3147
9. Bardos M; 1995. Les défaillances d'entreprises dans l'industrie: ratios significatifs, processus de défaillances, détection précoce. Banque de France, Centrale des bilans, Collection Entreprises, janvier.
10. Barron DN, West E, Hannan MT; 1994. A Time to Grow and a Time to Die: Growth and Mortality of Credit Unions in New York City (1914-1990). American Journal of Sociology; 100(2):381-421. DOI: https://doi.org/10.1086/230541
11. Bellovary JL, Giacomino DE, Akers MD; 2007. A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education; 1:1-42.
12. Ben Jabeur S; 2011. Statut de la faillite en théorie financière : approches théoriques et validations empiriques dans le contexte français. Thèse de doctorat, Université du Sud Toulon-Var.
13. Bescos PL; 1987. Défaillance et redressement des Pmi: Recherche des indices et des causes de défaillance. Cahier de Recherche du Cereg, 8701.
14. Brilman J; 1986. Gestion de crise et redressement d'entreprises. Paris : Éditions Hommes et Techniques.
15. Bunn P, Redwood V; 2003. Company Accounts-Based Modelling of Business Failures and the Implications for Financial Stability. Bank of England Working Paper No. 210. DOI: https://doi.org/10.2139/ssrn.598276
16. Camerer C, Lovallo D; 1999. Overconfidence and Excess Entry: An Experimental Approach. American Economic Review; 89:306-318. https://doi.org/10.1257/aer.89.1.306 DOI: https://doi.org/10.1257/aer.89.1.306
17. Casta JF, Zerbib JP; 1979. Prévoir la défaillance des entreprises ? Revue française de gestion, 97.
18. Charalambous C, Charitou A, Kaourou F; 2000. Comparative analysis of artificial neural network models: application in bankruptcy prediction. Annals of Operations Research; 99:403-425. DOI: https://doi.org/10.1023/A:1019292321322
19. Crucifix F, Derni A; 1992. Symptômes de défaillance et stratégies pour le redressement d'entreprise. Louvain-La-Neuve : Académia.
20. Crutzen N, Van Caillie D; 2007. L'enchaînement des facteurs de défaillance de l'entreprise : Une réconciliation des approches organisationnelles et financières. Comptabilité et Environnement.
21. Daubie M, et al; 2005. Utilisation de variables non financières dans le cadre de la prédiction de faillite d'entreprises de moins de cinq ans : une approche multicritère pour le cas belge. GET/ENST Bretagne, 68-82.
22. Fitzpatrick F; 1932. A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firms. Certified Public Accountant; 6:727-731.
23. Franks J, Sussman O; 2005. Financial innovations and corporate bankruptcy. Journal of Financial Intermediation; 14(3):283-317. DOI: https://doi.org/10.1016/j.jfi.2004.07.002
24. Gresse C; 1994. Les entreprises en difficulté. Paris : Economica.
25. Hambrick DC, D'Aveni RA; 1988. Large Corporate Failures as Downward Spirals. Administrative Science Quarterly; 33:1-23. https://doi.org/10.2307/2392853 DOI: https://doi.org/10.2307/2392853
26. Holder M, Loeb J, Portier G; 1984. Le score de l'entreprise. Paris : Nouvelles Éditions Fiduciaires.
27. Jacquemin A; 1985. Économie d'entreprise. Paris : Dalloz.
28. Jaminon R; 1986. Facteurs explicatifs de faillites. Revue de la Faculté de Droit de l'Université de Liège; 3:197-207. https://doi.org/10.12691/ijbrm-2-1-4
29. Juglar C; 1862. Des crises commerciales et leur retour périodique en France, en Angleterre et aux États-Unis (rééd. 1935).
30. Kamaluddin A, Ishak N, Mohammed NF; 2019. Financial distress prediction through cash flow ratios analysis. International Journal of Financial Research; 10:63-76. https://doi.org/10.5430/ijfr.v10n3p63 DOI: https://doi.org/10.5430/ijfr.v10n3p63
31. Kaplan R, Norton D; 1992. The Balanced Scorecard—Measures That Drive Performance. Harvard Business Review, 79.
32. Keynes JM; 1937. The general theory of employment. Quarterly Journal of Economics; 51(2):209-223. https://doi.org/10.2307/1882087 DOI: https://doi.org/10.2307/1882087
33. Kliestik T, Valaskova K, Lazaroiu G, Kovacova M, Vrbka J; 2020. Remaining financially healthy and competitive: The role of financial predictors. Journal of Competitiveness; 12:74-92. https://doi.org/10.7441/joc.2020.01.05 DOI: https://doi.org/10.7441/joc.2020.01.05
34. Koening G; 1985. Entreprise en difficulté : des symptômes aux remèdes. Revue Française de Gestion; 50:1-8.
35. Kondratieff ND; 1935. The long waves in economic life. Review of Economics and Statistics; 17(6):105-115. DOI: https://doi.org/10.2307/1928486
36. Lalonde RN, Moorcroft R; 1985. The Role of Attitudes and Motivation in Second Language Learning. Language Learning; 35:207-227. https://doi.org/10.1111/j.1467-1770.1985.tb01025.x DOI: https://doi.org/10.1111/j.1467-1770.1985.tb01025.x
37. Lamontagne E, Thirion B; 2000. Les facteurs de survie : les qualités du projet priment sur celles du créateur. Insee Première, 703.
38. Lawrence PR, Lorsch JW; 1967. Differentiation and Integration in Complex Organizations. Administrative Science Quarterly; 12:1-47. http://dx.doi.org/10.2307/2391211 DOI: https://doi.org/10.2307/2391211
39. Leibenstein H; 1966. Allocative Efficiency vs. X-Efficiency. American Economic Review; 56:392-415.
40. Liefhooghe B; 1997. Causes et mécanismes des faillites d'entreprises : une synthèse bibliographique. Cahiers de la Faculté des Sciences Économiques, Sociales et de Gestion; 189:1-45.
41. Liou D, Smith M; 2007. Macroeconomic Variables and Financial Distress. Journal of Accounting, Business & Management; 14:17-31.
42. Lukason O, Laitinen EK; 2019. Firm failure processes and components of failure risk. Journal of Business Research; 98:380-390. https://doi.org/10.1016/j.jbusres.2018.06.025 DOI: https://doi.org/10.1016/j.jbusres.2018.06.025
43. Malécot JF; 1991. Analyses théoriques des défaillances d'entreprises : une revue de la littérature. Revue d'Économie Financière, 19. https://doi.org/10.3406/ecofi.1991.1746 DOI: https://doi.org/10.3406/ecofi.1991.1746
44. Marco L; 1984. Les défaillances d'entreprises et la crise en France (1974-1983). Revue d'économie politique; 94(5):691-724.
45. Marchesnay M; 1988. La mercatique de la petite entreprise. Revue internationale PME; 1(3-4):258-276. https://doi.org/10.7202/1007884ar DOI: https://doi.org/10.7202/1007889ar
46. Michaux B; 1978. Profil et signification économique des faillites en Belgique. In A.-M. Kumps et al. (Éds.), Entreprises en difficulté et initiative publique (1). PUSL. https://doi.org/10.4000/books.pusl.9041 DOI: https://doi.org/10.4000/books.pusl.9041
47. Mselmi N, Lahiani A, Hamza T; 2017. Financial distress prediction: The case of French SMEs. International Review of Financial Analysis; 50:67-80. https://doi.org/10.1016/j.irfa.2017.02.004 DOI: https://doi.org/10.1016/j.irfa.2017.02.004
48. Mueller SA; 1991. The Opportunity Cost of Discipleship: Ethical Mutual Funds and Their Performance. Sociological Analysis; 52:111-124. https://doi.org/10.2307/3710719 DOI: https://doi.org/10.2307/3710719
49. Myers SC; 1977. Determinants of Corporate Borrowing. Journal of Financial Economics; 5:147-175. https://doi.org/10.1016/0304-405X(77)90015-0 DOI: https://doi.org/10.1016/0304-405X(77)90015-0
50. Oglhe H, Van Wymeersch C; 1996. Traité d'analyse financière (6e éd.). Namur : Presses Universitaires de Namur.
51. Ooghe H, Van Wymeersch C; 1986. Modèles prévisionnels de la faillite. Annales de Droit de Liège; 3:183-196. https://doi.org/10.12691/ijbrm-2-1-4
52. Ooghe H, Waeyaert N; 2004. Oorzaken van faling en falingspaden. Economisch en Sociaal Tijdschrift; 57(4):367-393. https://doi.org/10.12691/ijbrm-2-1-4
53. Ohlson JA; 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 109-131. https://doi.org/10.2307/2490395 DOI: https://doi.org/10.2307/2490395
54. Picory C; 1994. PME, incertitude et organisation industrielle. Revue d'économie industrielle; 67(1):40-58. DOI: https://doi.org/10.3406/rei.1994.1505
55. Samuelson P; 1939. Interaction between the Multiplier Analysis and the Principle of Acceleration. Review of Economic Statistics; 4:75-78. https://doi.org/10.2307/1927758 DOI: https://doi.org/10.2307/1927758
56. Sharma S, Mahajan V; 1980. Early Warning Indicators of Business Failure. Journal of Marketing; 44:80-89. https://doi.org/10.1177/002224298004400412 DOI: https://doi.org/10.1177/002224298004400412
57. Sharifabadi M, Mirhaj M, Izadinia N; 2017. The impact of financial ratios on the prediction of bankruptcy of SMEs. QUID: Investigación, Ciencia y Tecnología; 1:164-173.
58. Svabova L, Michalkova L, Durica M, Nica E; 2020. Business failure prediction for Slovak SMEs. Sustainability; 12:4572. https://doi.org/10.3390/su12114572 DOI: https://doi.org/10.3390/su12114572
59. Valaskova K, Kliestik T, Svabova L, Adamko P; 2018. Financial risk measurement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability; 10:2144. https://doi.org/10.3390/su10072144 DOI: https://doi.org/10.3390/su10072144
60. Wruck KH; 1990. Financial distress, reorganization, and organizational efficiency. Journal of Financial Economics; 27(2):419-444. https://doi.org/10.1016/0304-405X(90)90063-6 DOI: https://doi.org/10.1016/0304-405X(90)90063-6
61. Yim J, Mitchell H; 2002. A Comparison of Corporate Failure Models in Australia. RMIT Business School Working Paper, 10. https://doi.org/10.1007/3-540-45034-3_35. DOI: https://doi.org/10.1007/3-540-45034-3_35
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Amina Guennoun, Siham Ammari , Saad Saadouni , Souad Habbani (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.
