IoT and AI for Smart Rural Fishing: System Architecture, TEK Integration, and Economic Viability Analysis

Authors

DOI:

https://doi.org/10.56294/dm20261302

Keywords:

Internet of Things (IoT), Edge computing, Traditional Ecological Knowledge (TEK), Economic viability, Human-AI collaboration, Smart fisheries, Chinese fishing nets

Abstract

Introduction: The integration of IoT and AI technologies presents opportunities for modernizing traditional fishing practices while preserving ecological knowledge.
Objective: This research develops and evaluates an integrated IoT-AI system to enhance traditional Chinese fishing net operations in Kerala backwaters, India, with an emphasis on TEK integration and economic viability assessment.
Method: We deployed an edge-cloud computing architecture integrating 15 environmental sensors, automated winch systems, and cloud-based AI analytics at Chathedam fishing site (9,9674°N, 76,2816°E) over six months (January–June 2025), documenting 1,000 fishing operations and validating 20 TEK rules through statistical analysis.
Results: Nine high-confidence TEK rules (≥0,80) achieved 100 % validation success with 18–47 % catch improvements. AI-guided operations achieved 10 percentage point improvement in profit margin (70,4 % vs 60,4 %) primarily through cost reduction. System investment of $1,720 achieves payback in 1,8 months with 898 % ROI over 18 months.
Conclusions: The validated edge-cloud architecture, TEK-AI integration framework, and demonstrated economic viability provide a replicable model for technology-enabled enhancement of traditional small-scale fisheries.

References

[1] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems. 2013;29(7):1645–60. doi:10.1016/j.future.2013.01.010 DOI: https://doi.org/10.1016/j.future.2013.01.010

[2] Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2020: Sustainability in Action. Rome: FAO; 2020. doi:10.4060/ca9229en DOI: https://doi.org/10.4060/ca9229en

[3] Hornell J. Fishing in Many Waters. Cambridge: Cambridge University Press; 1950.

[4] Kurien J, Paul AC. Nets for Social Safety: An Analysis of Growth and Changing Composition of Social Security Programmes for the Fishworkers of Kerala State, India. Chennai: International Collective in Support of Fishworkers (ICSF); 2001.

[5] Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of Things in agriculture. Biosystems Engineering. 2017;164:31–48. doi:10.1016/j.biosystemseng.2017.09.007 DOI: https://doi.org/10.1016/j.biosystemseng.2017.09.007

[6] Xu W, Matzner S. Underwater fish detection using deep learning for water power applications. In: Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI). 2022. p. 313–8. doi:10.48550/arXiv.1811.01494 DOI: https://doi.org/10.1109/CSCI46756.2018.00067

[7] Zhou C, Xu D, Chen L, Zhang S, Sun C, Yang X, et al. Evaluation of fish feeding intensity in aquaculture using convolutional neural networks and machine vision. Aquaculture. 2019; 548:737585. doi: 10.1016/j.aquaculture.2019.04.056 DOI: https://doi.org/10.1016/j.aquaculture.2019.04.056

[8] Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge. Ecological Applications. 2000;10(5):1251–62. doi:10.2307/2641280 DOI: https://doi.org/10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2

[9] Ubina NA, Cheng SC, Chang CC, Chen HY, Sha J, Lin RH. A visual aquaculture system using a cloud-based autonomous drones. Drones. 2022;6(4):109. doi:10.3390/drones5040109 DOI: https://doi.org/10.3390/drones5040109

[10] Fernandes PG, Korneliussen RJ, Lebourges-Dhaussy A, et al. Acoustic estimates of abundance from scientific surveys. ICES Journal of Marine Science. 2022;79(4):779–89.

[11] Saleh A, Sheaves M, Rahimi Azghadi M. Computer vision and deep learning for fish classification in underwater habitats: A survey. Fish and Fisheries. 2022;23(4):977–99. doi:10.1111/faf.12666 DOI: https://doi.org/10.1111/faf.12666

[12] Stock BC, Xu H, Thorson JT. Spatiotemporal modeling for ecosystem-based fisheries management. Fish and Fisheries. 2023;24(1):78–96.

[13] Arostegui MC, Kadison E, Morse RE, Galuardi B, Jordaan A. Modeling marine fisheries catch data: A new approach using machine learning. Fisheries Research. 2022; 252:106339.

[14] Johannes RE. The case for data-less marine resource management. Trends in Ecology & Evolution. 1998;13(6):243–6. doi:10.1016/S0169-5347(98)01384-6 DOI: https://doi.org/10.1016/S0169-5347(98)01384-6

[15] Schumann S, Gaulke L, Sterling EJ. Mobilizing traditional ecological knowledge in fisheries management: A systematic review. People and Nature. 2022;4(6):1532–49.

[16] Martínez-Ortiz J, Castrejón M, Defeo O. Co-management effectiveness in small-scale fisheries: The role of fishers’ knowledge. Marine Policy. 2023; 155:105760.

[17] Hevner AR, March ST, Park J, Ram S. Design science in information systems research. MIS Quarterly. 2004;28(1):75–105. DOI: https://doi.org/10.2307/25148625

[18] Eisenhardt KM. Building theories from case study research. Academy of Management Review. 1989;14(4):532–50. doi:10.2307/258557 DOI: https://doi.org/10.2307/258557

[19] Davis MC, Challenger R, Jayewardene DN, Clegg CW. Advancing socio-technical systems thinking: A call for bravery. Applied Ergonomics. 2014;45(2):171–80. doi:10.1016/j.apergo.2013.02.009 DOI: https://doi.org/10.1016/j.apergo.2013.02.009

[20] Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Computer Networks. 2010;54(15):2787–805. doi:10.1016/j.comnet.2010.05.010 DOI: https://doi.org/10.1016/j.comnet.2010.05.010

[21] Jarrahi MH. Artificial intelligence and the future of work. Business Horizons. 2018;61(4):577–86. doi:10.1016/j.bushor.2018.03.007 DOI: https://doi.org/10.1016/j.bushor.2018.03.007

[22] Salim SS, Safeena PK, Divya PR, Remya R. Enhancing the livelihood security of coastal fishers in Kerala: An economic analysis. Indian Journal of Fisheries. 2022;69(2):85–93. doi:10.21077/ijf.2022.69.2.117628-10

[23] Indian Council of Agricultural Research (ICAR). Vision 2050: ICAR–Central Marine Fisheries Research Institute. Kochi: CMFRI; 2022.

[24] Jentoft S, Eide A, editors. Poverty Mosaics: Realities and Prospects in Small-Scale Fisheries. Dordrecht: Springer; 2011. doi:10.1007/978-94-007-1582-0 DOI: https://doi.org/10.1007/978-94-007-1582-0

Downloads

Published

2026-01-01

Issue

Section

Original

How to Cite

1.
Krishnan M, Karthik DR. IoT and AI for Smart Rural Fishing: System Architecture, TEK Integration, and Economic Viability Analysis. Data and Metadata [Internet]. 2026 Jan. 1 [cited 2026 Jan. 14];5:1302. Available from: https://dm.ageditor.ar/index.php/dm/article/view/1302