Quantum Optimization for Intelligent User Data Allocation in Distributed Cloud Infrastructure
DOI:
https://doi.org/10.56294/dm20251328Keywords:
Quantum optimization, Data placement, Distributed cloud computing, Latency reduction, Quantum-inspired algorithmsAbstract
In a modern environment in which cloud computing is distributed globally, optimizing the placements of user data in the different cloud locations would ensure that the data can be accessed with minimum latency and fast access. Traditional heuristic and machine-learning methods are often prohibitively expensive to scale and have a hard time adjusting to a dynamic cloud environment. Scalable and adaptive optimization strategies are required when user demands and data volumes grow very fast. There is a fair likelihood that quantum-based methods, particularly, the metaheuristic methods, are an alternative that can effectively react to dynamic conditions. The proposed model will be based on Quantum Particle Swarm Optimization when moving user data to the most suitable places within distributed cloud canters. Through quantum-inspired probabilistic search, the algorithm becomes more adaptive and more efficient than traditional ones. Experiments, based on these simulations of the user request in the case of a geo-distributed cloud, have shown a significant reduction in latency up to 28% and better load balancing compared to the traditional approaches. Altogether, these results highlight the prospects of quantum computing when it comes to improving the efficiency and responsiveness of cloud infrastructure. The primary strength of the QPSO is that it can be easily modified to facilitate the rapid response to the rapidly changing environment to allow access to the distributed cloud systems in an efficient way and with a low latency.
References
1. Lin B, Zhu F, Zhang J, Chen J, Chen X, Xiong NN. A time-driven data placement strategy for a scientific workflow combining edge computing and cloud computing. IEEE Trans Ind Inform. 2019;15(7):4254–4265. doi:10.1109/TII.2019.2905659. DOI: https://doi.org/10.1109/TII.2019.2905659
2. Chen C, Hu Z, Min M, Chen X. Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization. Concurrency Comput Pract Exp. 2019;31(12):e5413. doi:10.1002/cpe.5413. DOI: https://doi.org/10.1002/cpe.5413
3. Pirandola S, Eisert J, Weedbrook C, Furusawa A, Braunstein SL. Advances in quantum teleportation. Nat Photonics. 2015;9(10):641–652. doi:10.1038/nphoton.2015.154. DOI: https://doi.org/10.1038/nphoton.2015.154
4. Brahmi Z, Derouiche R. EQGSA-DPW: A quantum GSA algorithm-based data placement for scientific workflow in cloud computing environment. J Grid Comput. 2024;22:57. doi:10.1007/s10723-024-09771-5. DOI: https://doi.org/10.1007/s10723-024-09771-5
5. Bey M, Kuila P, Naik BB, Ghosh S. Quantum-inspired particle swarm optimization for efficient IoT service placement in edge computing systems. Expert Syst Appl. 2023;236:121270. doi:10.1016/j.eswa.2023.121270. DOI: https://doi.org/10.1016/j.eswa.2023.121270
6. Wang B, Zhang Z, Song Y, Chen M, Chu Y. Application of quantum particle swarm optimization for task scheduling in device-edge-cloud cooperative computing. Eng Appl Artif Intell. 2023;126:107020. doi:10.1016/j.engappai.2023.107020. DOI: https://doi.org/10.1016/j.engappai.2023.107020
7. Jmal S, Haddar B, Chabchoub H. A guided quantum particle swarm optimization approach for the traveling repairman problem. J Ind Manag Optim. 2025;0(0):1–20. doi:10.3934/jimo.2025073. DOI: https://doi.org/10.3934/jimo.2025073
8. Naik BB, Priyanka B, Ansari SA. Energy-efficient task offloading and efficient resource allocation for edge computing: a quantum-inspired particle swarm optimization approach. Cluster Comput. 2025;28(3). doi:10.1007/s10586-024-04833-5. DOI: https://doi.org/10.1007/s10586-024-04833-5
9. Balicki J. Many-objective quantum-inspired particle swarm optimization algorithm for placement of virtual machines in smart computing cloud. Entropy. 2022;24(1):58. doi:10.3390/e24010058. DOI: https://doi.org/10.3390/e24010058
10. Abdullah F, Razaq M, Kim Y, Peng L, Suh Y, Tak B. IoT query latency enhancement by resource-aware task placement in the fog. In: Proc 37th ACM/SIGAPP Symp Appl Comput; 2024. p. 536–544. doi:10.1145/3605098.3635939. DOI: https://doi.org/10.1145/3605098.3635939
11. Wang P, Qiao J, Zhao Y, Ding Z. Cost-effective and low-latency data placement in edge environment based on PageRank-inspired regional value. IEEE Trans Parallel Distrib Syst. 2024:1–12. doi:10.1109/TPDS.2024.3506625. DOI: https://doi.org/10.1109/TPDS.2024.3506625
12. Cui H, Tang Z, Lou J, Jia W, Zhao W. Latency-aware container scheduling in edge cluster upgrades: a deep reinforcement learning approach. IEEE Trans Serv Comput. 2024;17(5):2530–2543. doi:10.1109/TSC.2024.3394689. DOI: https://doi.org/10.1109/TSC.2024.3394689
13. Li Z, Lou J, Wu J, Guo J, Tang Z, Shen P, et al. Online container scheduling with fast function startup and low memory cost in edge computing. IEEE Trans Comput. 2024;73(12):2747–2760. doi:10.1109/TC.2024.3441836. DOI: https://doi.org/10.1109/TC.2024.3441836
14. Jin X, Wang W, Zhang Z, Guo S. Container migration for edge computing in industrial internet: a latency–reliability trade-off. Sci Rep. 2024;14:Article number unavailable. doi:10.1038/s41598-024-77086-2. DOI: https://doi.org/10.1038/s41598-024-77086-2
15. Centofanti C, Tiberti W, Marotta A, Graziosi F, Cassioli D. Taming latency at the edge: a user-aware service placement approach. Comput Netw. 2024;247:110444. doi:10.1016/j.comnet.2024.110444. DOI: https://doi.org/10.1016/j.comnet.2024.110444
16. Elsedimy EI, Herajy M, Abohashish SMM. Energy and QoS-aware virtual machine placement approach for IaaS cloud datacenter. Neural Comput Appl. 2025. doi:10.1007/s00521-024-10872-1. DOI: https://doi.org/10.1007/s00521-024-10872-1
17. Sharon M, Viji R, Rajkumar V, Surendiran RV. Energy-efficient data offloading using data access strategy-based data grouping scheme. SSRG Int J Electron Commun Eng. 2023;10(5):28–37. doi:10.14445/23488549/IJECE-V10I5P103. DOI: https://doi.org/10.14445/23488549/IJECE-V10I5P103
18. Chitra S. Optimal data placement and replication approach for SIoT with edge. Comput Syst Sci Eng. 2022;41(2):661–676. doi:10.32604/csse.2022.019507. DOI: https://doi.org/10.32604/csse.2022.019507
19. Li C, Cai Q, Lou Y. Optimal data placement strategy considering capacity limitation and load balancing in geographically distributed cloud. Future Gener Comput Syst. 2022;127:142–159. doi:10.1016/j.future.2021.08.014. DOI: https://doi.org/10.1016/j.future.2021.08.014
20. Najmusher H, Rajkumar N, Jayavadivel R, Viji C, Nandha Gopal SM. Nature-inspired data placement strategy in distributed cloud environment using improved firefly algorithm. SSRG Int J Electron Commun Eng. 2023;10(8):59–67. doi:10.14445/23488549/IJECE-V10I8P106. DOI: https://doi.org/10.14445/23488549/IJECE-V10I8P106
21. Baş E. Improved particle swarm optimization based on quantum-behaved framework for big data optimization. Neural Process Lett. 2022;55(3):2551–2586. doi:10.1007/s11063-022-10850-5. DOI: https://doi.org/10.1007/s11063-022-10850-5
22. Li M, Cao D, Gao H. A quantum-behaved particle swarm optimization with a chaotic operator. In: Lu H, Cai J, editors. Artificial Intelligence and Robotics (ISAIR 2023). Commun Comput Inf Sci. Vol. 1998. Singapore: Springer; 2024. doi:10.1007/978-981-99-9109-9_21. DOI: https://doi.org/10.1007/978-981-99-9109-9_21
23. Li X, Fang W, Zhu S. An improved binary quantum-behaved particle swarm optimization algorithm for knapsack problems. Inf Sci. 2023;648:119529. doi:10.1016/j.ins.2023.119529. DOI: https://doi.org/10.1016/j.ins.2023.119529
24. Ye H, Dong J. An ensemble algorithm based on adaptive chaotic quantum-behaved particle swarm optimization with Weibull distribution and hunger games search and its financial application in parameter identification. Appl Intell. 2024;54(9–10):6888–6917. doi:10.1007/s10489-024-05537-4. DOI: https://doi.org/10.1007/s10489-024-05537-4
25. Wang M, Cao Z, Li Y. Quantum-behaved particle swarm optimization based on concentration selection probability assignment weights for power system economic dispatch. IEEJ Trans Electr Electron Eng. 2024;19(5):640–652. doi:10.1002/tee.24015. DOI: https://doi.org/10.1002/tee.24015
26. Chen Q, Jun S, Palade V. A hybrid quantum-behaved particle swarm optimization solution to non-convex economic load dispatch with multiple fuel types and valve-point effects. Intell Data Anal. 2023;27(5):1503–1522. doi:10.3233/IDA-220415. DOI: https://doi.org/10.3233/IDA-220415
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Viji C, Rajkumar N, Stephen R, Gobinath R, Balusamy Nachiappan, Prabhu Shankar B (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.
