Creation of a soft circular patch antenna for 5G at a frequency of 2.45 GHz dedicated to biomedical applications
DOI:
https://doi.org/10.56294/dm2023127Keywords:
5G, Antenna Soft, 2,45GHz, HFSS, Slot, ISM, GNDAbstract
Telemedicine technology is one of the key achievements of recent years. This technology is based on biomedical devices that contain essential components, in-cluding antennas. Biomedical antennas ensure the exchange of data between de-vices installed on the human body and the external environment. This paper pre-sents the study and design of a flexible circular patch antenna implanted on a bio-sourced substrate for industrial, scientific, and medical applications. The frequen-cy chosen for the study is 2,45GHz. Return loss and radiation pattern measure-ments. An improvement in the gain of this antenna is also investigated in this study. This antenna offers adequate performance to meet the needs of 5G users. This antenna is printed on a polyester substrate with a thickness of h=2,85cm, a relative permittivity εr=3,2, a loss tangent equal to 0,003, and a patch radius equal to 2,11cm. In addition, this antenna provides the following results: reflection co-efficient S11=-26,59dB, bandwidth BW=0,12GHz, gain G=5,6, directivity D=5,8dB, and efficiency η=96,55 %
References
1. Allesandra, C., Diego. M.: Smart Solutions in Smart Spaces: Getting the Most from Far-Field Wireless Power Transfer. IEEE Microwave Magazine 17(5), 30-45(2016).
2. Abdelhafid, E., Maryam, A., Said, M., Mohammed, F., e al. : A pHEMT Double-Balanced Up-Conversion Mixer for 5G MM-Wave Communication Systems. IJMOT 17(4), 401-4011(2022).
3. Salah-Eddine, D., Imane, H., Mohammed, F., Younes, B., Said, M., Moulhime, EL.: Study and Design of a 5G Millimeter Band Patch Antenna with a Resonant Frequency of 60 GHz. Journal of Nano- and Electronic Physics 15(2), 02015-1-02015-6(2023).
4. Sugumari, T., Fusic, S.J., Cornelius, K.S.R.J. et al. Design and Analysis of Single-Fed Du-al-Mode Circular Parasitic Patch Antenna (CPPA) for UAV Application. SN COMPUT. SCI. 4, 247 (2023).
5. Xiao, C., Liang. Z., Yang. J.: Radiation Characteristic Analysis of Antenna Deeply Implant-ed in Human Body and Localization Sensor Array. IEEE Transactions on Instrumentation and Measurement Vol. 71. 2022.
6. AMER. A, OMAR. A. S, ASHRAF. A, SAMER A.: Design of LoRa Antenna for Weara-ble Medical Applications. IEEE Access Vol. 11. pp. 23886-23895(2023).
7. Salah-Eddine, D., Imane, H., Mohammed, F., Younes, B., Said, M., Moulhime, EL, Sudip-ta, D.: Study and Design of the Microstrip Patch Antenna Operating at 120 GHz. In: El Ghzaoui, M., Das, S., Lenka, T.R., Biswas, A. (eds) Terahertz Wireless Communication Components and System Technologies. pp. 175-190, Springer, Singapore (2022).
8. Auza-Santiváñez JC, Díaz JAC, Cruz OAV, Robles-Nina SM, Escalante CS, Huanca BA. mHealth in health systems: barriers to implementation. Health Leadership and Quality of Life 2022;1:7-7. https://doi.org/10.56294/hl20227.
9. Ali, H. K.: Implementation of a Circular Shape Patch Antenna at 2.4 GHz for Different Wireless Communications. Iraqi Journal of Science 64 (1), 205-214(2023).
10. Inasse. E, Anas. C, Salaheddine. K. A.: Modeling and Simulation of Transport and Biologi-cal Reaction in Fluid-Saturated Porous Media. International Review on Modelling and Simu-lations (IREMOS) Vol 15, No 3(3), pp. 197-202 (2022).
11. Pandey, S., Markam, K.: Design and Analysis of Circular Shape Microstrip Patch Antenna for C-band Applications. International Journal of Advanced Research in Computer Science & Technology 4, 169-171(2016).
12. Gonzalez-Argote J. Patterns in Leadership and Management Research: A Bibliometric Review. Health Leadership and Quality of Life 2022;1:10-10. https://doi.org/10.56294/hl202210.
13. Tsung-Fu. C, Hung-Chi. Y, Chien-Min. C, Ching-Hsing. L.: develop CPW-fed monopole broadband implantable antennas on high dielectric constant ceramic substrates. Microwave Opt Technol Lett, VOL. 52, No. 9, pp. 2136–2139(2010).
14. Ashok. A. S, Shanmuganantham. T: CPW fed monopole implantable antenna for 2.45 GHz ISM band applications. International Journal of Electronics Letters. june 2013.
15. Kumar Naik Ketavath et al.: In-Vitro Test of Miniaturized CPW-Fed Implantable Conformal Patch Antenna at ISM Band for Biomedical Applications, “ IEEE Access, VOL. 7, pp. 43547-43554(2019).
16. Faisal. F, Yoo. H.: A Miniaturized Novel-Shape Dual-BandAntenna for Implantable Appli-cations. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 2(2019).
17. Piyush Kumar Mishra et al.: A Novel Skin-Implantable Patch Antenna For Biomedical Ap-plications. International Conference on Electrical, 2020.
18. Sreelakshmy. R, Ashok Kumar. S, Shanmuganantham. T.: A wearable type embroidered logo antenna at ISM band for military applications. Microw Opt Technol Lett, VOL. 59, pp. 2159–2163( 2017).
19. Tuan Le. T, Tae-Yeoul. Yun.: Wearable Dual-Band High-Gain Low-SAR Antenna for Off-Body Communication. IEEE Antennas and Wireless Propagation Letters, VOL. 20, 2021.
20. Ibanez Labiano, Alomainy, A.: Flexible inkjet-printed graphene antenna on Kapton. Flex. Print. Electron 6(2), 1-9(2021).
21. Xu, D., Xu, R., Hu, B. et al. Flexible low-profile UWB antenna on polyimide film based on silver nanoparticle direct-write dispenser printing for wireless applications. Journal of Mate-rials Science: Materials in Electronics 34(1297), (2023).
22. Salah-Eddine, D., Imane, H., Mohammed, F., Younes, B., Said, M., Moulhime, EL.: Design of a Microstrip Antenna Two-Slot for Fifth Generation Applications operating at 27.5GHz. International Conference on Digital Technologies and Applications(ICDTA), Lecture Notes in Networks and Systems, Fes, Morocco, vol 211, pp. 1081-1089. Springer (2021).
23. Balanis C.A(1982) Handbook of Microstrip Antennas. John Wiley and Sons New York.
24. Babatunde, S., Latujoye, O., Jeffrey, C. S, : Design and Performance Analysis of 4-Element Multiband Circular Microstrip Antenna Array for Wireless Communications. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) 18(1), 01-07(2023).
25. Salah-Eddine, D., Imane, H., Abdelhafid, E., Mohammed, F., Younes, B., Said, M., Moulhime, EL. New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application. IJECE 13(4), 4184~4193(2023).
26. Ali, H. K.: Implementation of a Circular Shape Patch Antenna at 2.4 GHz for Different Wireless Communications. Iraqi Journal of Science 25 (4), 54-58(2022).
27. Sohel, R. Md., Mostafizur, R. Md.: Study of Microstrip Patch Antenna for Wireless Com-munication System. In: 2022 International Conference for Advancement in Technology (ICONAT), pp. 1-4. IEEE, Goa, India (2022).
28. Gökçen, D., Cem, G., Ismail, A.: MICRO-STRIP PATCH 2.4 GHz Wi-Fi ANTENNA DESIGN FOR WLAN 4G- 5G APPLICATION. International Journal of Surveys, Engi-neering and Technology 6(1), 68-72(2022).
29. Cem, G., Sena, E. B. K., Rukiye, B. A.: The Development of Broadband Microstrip Patch Antenna for Wireless Applications. BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE 11(3), 812-819(2022).
30. Md. Sohel Rana, Bijoy Kumer Sen, Md. Tanjil-Al Mamun, Md. Shahriar Mahmud, Md. Mostafizur Rahman.: A 2.45 GHz microstrip patch antenna design, simulation, and analysis for wireless applications. Bulletin of Electrical Engineering and Informatics 12(4), 2173~2184(2023).
Published
Issue
Section
License
Copyright (c) 2023 Salah Eddine Didi, Imane Halkhams, Abdelhafid Es-Saqy, Mohammed Fattah, Younes Balboul, Said Mazer, Moulhime El Bekkali (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.