Utilizing Data Mining and Machine Learning for Enhancing Bachelor's Degree Outcomes and Predicting Students' Academic Success

Authors

  • Mohamed Sabiri STI Laboratory, IDM, T-IDMS Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. Morocco Author
  • Yousef Farhaoui STI Laboratory, IDM, T-IDMS Faculty of Sciences and Techniques, Moulay Ismail University of Meknes. Morocco Author
  • Agoujil Said Ecole Nationale de Commerce et de Gestion, Moulay Ismail University of Meknes. Morocco Author

DOI:

https://doi.org/10.56294/dm2023105

Keywords:

Data Mining, Machine learning, Prediction

Abstract

This paper aims to conceptualize, design, and implement a Data Mining (DM) system integrated with machine learning within the realm of school management. The primary objective is to support the educational community and decision-makers in addressing the issue of school dropout and enhancing success rates at the certificate levels in Morocco, specifically focusing on the bachelor's degree examination in the qualifying cycle. The proposed system categorizes students five months prior to the exam date, facilitating targeted academic interventions for those at risk of course repetition or discontinuation. The DM system, operational throughout the school year, enhances the precision and effectiveness of schools and provincial administrations by identifying areas requiring additional support to improve end-of-year success rates and student performance. Project development is rooted in the collection and analysis of existing data from various departmental information systems, utilizing classification and regression algorithms to predict learner performance, success rates, and overall outcomes at the conclusion of certificate levels

References

1. Susnjak T. Beyond Predictive Learning Analytics Modelling and onto Explainable Artificial Intelligence with Prescriptive Analytics and ChatGPT. Int J Artif Intell Educ 2023. https://doi.org/10,1007/s40593-023-00336-3.

2. Sunyaev A. Internet Computing: Principles of Distributed Systems and Emerging Internet-Based Technologies. Cham: Springer International Publishing; 2020. https://doi.org/10,1007/978-3-030-34957-8.

3. Zapata-Rivera D. Open Student Modeling Research and its Connections to Educational Assessment. Int J Artif Intell Educ 2021;31:380‑96. https://doi.org/10,1007/s40593-020-00206-2.

4. Nagy M, Molontay R. Interpretable Dropout Prediction: Towards XAI-Based Personalized Intervention. Int J Artif Intell Educ 2023. https://doi.org/10,1007/s40593-023-00331-8.

5. Gray CC, Perkins D. Utilizing early engagement and machine learning to predict student outcomes. Comput Educ 2019;131:22‑32.

6. Howard E, Meehan M, Parnell A. Contrasting prediction methods for early warning systems at undergraduate level. Internet High Educ 2018;37:66‑75.

7. Rienties B, Køhler Simonsen H, Herodotou C. Defining the boundaries between artificial intelligence in education, computer-supported collaborative learning, educational data mining, and learning analytics: A need for coherence. Front. Educ., vol. 5, Frontiers Media SA; 2020, p. 128.

8. Eglington LG, Pavlik PI. How to Optimize Student Learning Using Student Models That Adapt Rapidly to Individual Differences. Int J Artif Intell Educ 2023;33:497‑518. https://doi.org/10,1007/s40593-022-00296-0.

9. Houari R, Bounceur A, Kechadi T. Nouvelle approche de prétraitement pour les fouilles de données numériques. Proc. 2ieme Édition Conférence Natl. L’informatique Destin. Aux Étud. Grad. Postgraduation JEESI’12, 2012.

10. Miguéis VL, Freitas A, Garcia PJ, Silva A. Early segmentation of students according to their academic performance: A predictive modelling approach. Decis Support Syst 2018;115:36‑51.

11. Vieira CP, Digiampietri LA. Machine Learning post-hoc interpretability: a systematic mapping study. XVIII Braz. Symp. Inf. Syst., Curitiba Brazil: ACM; 2022, p. 1‑8. https://doi.org/10,1145/3535511,3535512.

12. Mitros J, Mac Namee B. A Categorisation of Post-hoc Explanations for Predictive Models 2019.

13. Zafar MR, Khan N. Deterministic local interpretable model-agnostic explanations for stable explainability. Mach Learn Knowl Extr 2021;3:525‑41.

14. Messalas A, Kanellopoulos Y, Makris C. Model-agnostic interpretability with shapley values. 2019 10th Int. Conf. Inf. Intell. Syst. Appl. IISA, IEEE; 2019, p. 1‑7.

15. Romero C, Ventura S. Educational data mining and learning analytics: An updated survey. WIREs Data Min Knowl Discov 2020;10:e1355. https://doi.org/10,1002/widm.1355.

16. Möller J, Zitzmann S, Helm F, Machts N, Wolff F. A Meta-Analysis of Relations Between Achievement and Self-Concept. Rev Educ Res 2020;90:376‑419. https://doi.org/10,3102/0034654320919354.

17. Gonzalez-Argote D, Gonzalez-Argote J. Generation of graphs from scientific journal metadata with the OAI-PMH system. Seminars in Medical Writing and Education 2023;2:43-43. https://doi.org/10,56294/mw202343.

18. Uman JMM, Arias LVC, Romero-Carazas R. Factores que dificultan la graduación: El caso de la carrera profesional de contabilidad en las universidades peruanas. Revista Científica Empresarial Debe-Haber 2023;1:58-74.

19. Inastrilla CRA. Big Data in Health Information Systems. Seminars in Medical Writing and Education 2022;1:6-6. https://doi.org/10,56294/mw20226.

20. Contreras JG, Rodríguez AU, Gaviño AS. Comportamiento Organizacional para el Balance Integral Humano desde la NOM-035 en escenario post-pandemia COVID-19. Revista Científica Empresarial Debe-Haber 2023;1:41-57.

21. Rodríguez FAR, Flores LG, Vitón-Castillo AA. Artificial intelligence and machine learning: present and future applications in health sciences. Seminars in Medical Writing and Education 2022;1:9-9. https://doi.org/10,56294/mw20229.

22. Alaoui, S.S., and all. "Hate Speech Detection Using Text Mining and Machine Learning", International Journal of Decision Support System Technology, 2022, 14(1), 80. DOI: 10,4018/IJDSST.286680

23. Alaoui, S.S., and all,"Data openness for efficient e-governance in the age of big data", International Journal of Cloud Computing, 2021, 10(5-6), pp. 522–532, https://doi.org/10,1504/IJCC.2021,120391

24. El Mouatasim, A., and all. "Nesterov Step Reduced Gradient Algorithm for Convex Programming Problems", Lecture Notes in Networks and Systems, 2020, 81, pp. 140–148. https://doi.org/10,1007/978-3-030-23672-4_11

25. Tarik, A., and all."Recommender System for Orientation Student" Lecture Notes in Networks and Systems, 2020, 81, pp. 367–370. https://doi.org/10,1007/978-3-030-23672-4_27

26. Sossi Alaoui, S., and all. "A comparative study of the four well-known classification algorithms in data mining", Lecture Notes in Networks and Systems, 2018, 25, pp. 362–373. https://doi.org/10,1007/978-3-319-69137-4_32

27. Canova-Barrios C, Machuca-Contreras F. Interoperability standards in Health Information Systems: systematic review. Seminars in Medical Writing and Education 2022;1:7-7. https://doi.org/10,56294/mw20227.

28. Farhaoui, Y., "Securing a Local Area Network by IDPS Open Source", Procedia Computer Science, 2017, 110, pp. 416–421. https://doi.org/10,1016/j.procs.2017,06.106

Downloads

Published

2023-12-29

Issue

Section

Original

How to Cite

1.
Sabiri M, Farhaoui Y, Said A. Utilizing Data Mining and Machine Learning for Enhancing Bachelor’s Degree Outcomes and Predicting Students’ Academic Success. Data and Metadata [Internet]. 2023 Dec. 29 [cited 2024 Dec. 21];2:105. Available from: https://dm.ageditor.ar/index.php/dm/article/view/148