Dynamic Threshold Fine-Tuning in Anomaly Severity Classification for Enhanced Solar Power Optimization

Authors

  • Mohamed Khalifa Boutahir Engineering science and technology laboratory, IDMS Team, Faculty of Sciences and Tech-niques, Moulay Ismail University of Meknes. Morocco Author
  • Abdelaaziz Hessane Engineering science and technology laboratory, IDMS Team, Faculty of Sciences and Tech-niques, Moulay Ismail University of Meknes. Morocco Author
  • Imane Lasri Laboratory of Conception and Systems (Electronics, Signals and Informatics), Faculty of Sci-ences, Mohammed V University in Rabat. Morocco Author
  • Salma Benchikh Advanced systems engineering laboratory, National school of applied sciences, Ibn Tofail Uni-versity. Kenitra, Morocco Author
  • Yousef Farhaoui Engineering science and technology laboratory, IDMS Team, Faculty of Sciences and Tech-niques, Moulay Ismail University of Meknes. Morocco Author
  • Mourade Azrour Engineering science and technology laboratory, IDMS Team, Faculty of Sciences and Tech-niques, Moulay Ismail University of Meknes. Morocco Author

DOI:

https://doi.org/10.56294/dm202394

Keywords:

Anomaly Detection, Solar Power Optimization, Machine Learning Algorithms, Dynamic Threshold Fine-Tuning, Renewable Energy Management

Abstract

This study explores an innovative approach to anomaly severity classification within the realm of solar power optimization. Leveraging established machine learning algorithms—including Isolation Forest (IF), Local Outlier Factor (LOF), and Principal Component Analysis (PCA)—we introduce a novel framework marked by dynamic threshold fine-tuning. This adaptive paradigm aims to refine the accuracy of anomaly classification under varying environmental conditions, addressing factors such as dust storms and equipment irregularities. The research builds upon datasets derived from Errachidia, Morocco. Results underscore the effectiveness of dynamically adjusting severity thresholds in optimizing anomaly classification and subsequently improving the overall efficiency of solar power generation. The study not only reaffirms the robustness of the initial framework but also emphasizes the practical significance of fine-tuning anomaly severity classification for real-world applications in solar energy management. By providing a more nuanced perspective on anomaly detection, this research advances our understanding of the intricate precision required for optimal solar power generation efficiency. The findings contribute valuable insights into the broader field of machine learning applications in renewable energy, offering a pathway for the refinement of existing frameworks for enhanced sustainability and operational effectiveness

References

1. Rezende, L.S.M. et al. (2021). Anomaly detection in solar power generation: A systematic literature review. Renewable and Sustainable Energy Reviews, 151, 111564.

2. Zameer, A., et al. (2020). Intelligent and robust prediction of photovoltaic power: A review. IEEE Access, 8, 128356-128371.

3. Sobri, S. et al. (2020). Solar photovoltaic generation forecasting methods: A re-view. Energy Conversion and Management, 156, 398-411.

4. Luna, A.S. et al. (2022). Solar forecasting methods applied to the prediction of photovoltaic power production: A review. Renewable and Sustainable Energy Re-views, 153, 111660.

5. Liu, Fei Tony, et al. "Isolation forest." In Proceedings of the 23rd international conference on machine learning, pp. 413-422. 2012.

6. Breunig, Markus M., et al. "LOF: Identifying density-based local outliers." In Pro-ceedings of the 22nd SIGMOD international conference on management of data, pp. 493-500. 2000.

7. Jolliffe, Ian T. Principal component analysis. Springer, 2002.

8. Luna, A.S., et al. (2021). Solar power forecasting based on machine learning and ephemeris for blueprints of photovoltaic plants. Electronics, 10(3), 305.

9. Sobri, S., Koohi-Kamali, S., Rahim, N.A. (2020). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 398-411.

10. Voyant, C., et al. (2017). Machine learning for solar radiation forecasting: A re-view. Renewable Energy, 105, 569-582.

11. Luna, A.S., et al. (2022). Solar forecasting methods applied to the prediction of photovoltaic power production: A review. Renewable and Sustainable Energy Re-views, 153, 111660.

12. Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F.J., An-tonanzas, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78-111.

13. Voyant, C., Randimbivololona, P., Nivet, M.L., Paoli, C., Muselli, M. (2018). Twen-ty four hours ahead global irradiation forecasting using multi-model approach: Application in Reunion Island. Renewable Energy, 118, 870-880.

14. Rezende, L.S.M., Lyra, C., Leite, W.N., Batista, G.P., Silva, I.N. (2021). Anomaly detection in solar power generation: A systematic literature review. Renewable and Sustainable Energy Reviews, 151, 111564.

15. Sobri, S., Koohi-Kamali, S., Rahim, N.A. (2020). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 398-411.

16. Sarmas, E., Spiliotis, E., Stamatopoulos, E., Marinakis, V., & Doukas, H. (2023). Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models. Renewable Energy, 216, 118997. https://doi.org/10.1016/j.renene.2023.118997

17. Kaur, D., Islam, S. N., Mahmud, M. A., Haque, M. E., & Anwar, A. (2023). A VAE-Bayesian deep learning scheme for solar power generation forecasting based on dimensionality reduction. Energy and AI, 14, 100279. https://doi.org/10.1016/j.egyai.2023.100279

18. Dey, M., Rana, S. P., Simmons, C. V., & Dudley, S. (2021). Solar farm voltage anomaly detection using high-resolution μPMU data-driven unsupervised machine learning. Applied Energy, 303, 117656. https://doi.org/10.1016/j.apenergy.2021.117656

19. Moulad, L., Belhadaoui, H., Rifi, M. (2019). Implementation of an Hierarchical Hybrid Intrusion Detection Mechanism in Wireless Sensor Network Based on En-ergy Management. In: Mizera-Pietraszko, J., Pichappan, P., Mohamed, L. (eds) Lecture Notes in Real-Time Intelligent Systems. RTIS 2017. Advances in Intelli-gent Systems and Computing, vol 756. Springer, Cham. https://doi.org/10.1007/978-3-319-91337-7_33

20. Boutahir, M.K., Farhaoui, Y., Azrour, M. (2023). Towards an Effective Anomaly Detection in Solar Power Plants Using the AE-LSTM-GA Approach. In: Farhaoui, Y., Rocha, A., Brahmia, Z., Bhushab, B. (eds) Artificial Intelligence and Smart En-vironment. ICAISE 2022. Lecture Notes in Networks and Systems, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-031-26254-8_115

21. Belcaid and M. Douimi (2020). A Novel Online Change Point Detection Using an Approximate Random Blanket and the Line Process Energy. International Journal on Artificial Intelligence ToolsVol. 29, No. 06, 2050018 2020 https://doi.org/10.1142/S0218213020500189

22. Elliott, M., & Kittner, N. (2022). Operational grid and environmental impacts for a V2G-enabled electric school bus fleet using DC fast chargers. Sustainable Produc-tion and Consumption, 30, 316-330. https://doi.org/10.1016/j.spc.2021.11.029

23. Adewuyi, O. B., Kiptoo, M. K., Adebayo, I. G., Adewuyi, O. I., & Senjyu, T. (2023). Techno-economic analysis of robust gas-to-power distributed generation planning for grid stability and environmental sustainability in Nigeria. Sustainable Energy Technologies and Assessments, 55, 102943. https://doi.org/10.1016/j.seta.2022.102943

24. Weidner, T., & Guillén-Gosálbez, G. (2023). Planetary boundaries assessment of deep decarbonization options for building heating in the European Union. Energy Conversion and Management, 278, 116602. https://doi.org/10.1016/j.enconman.2022.116602

25. Halimi M, Outana I, El Amrani A, Diouri J, Messaoudi C. Prediction of captured solar energy for different orientations and tracking modes of a PTC system: Tech-nical feasibility study (Case study: South eastern of Morocco). Energy Convers Manag 2018 ;167 :21e36.

26. Hessane, A. El Youssefi, Y. Farhaoui, B. Aghoutane and F. Amounas, "A Machine Learning Based Framework for a Stage-Wise Classification of Date Palm White Scale Disease," in Big Data Mining and Analytics, vol. 6, no. 3, pp. 263-272, September 2023, doi: 10.26599/BDMA.2022.9020022.

27. Mohamed, Khala & Abouzid, Houda & Teidj, Sara. (2021). Prédiction de Rayon-nement Solaire Global (RSG) : Par les Réseaux de Neurones Artificiels Cas d'étude : la ville d’Er-Rachidia, Maroc.

28. M. K. Boutahir, Y. Farhaoui, M. Azrour, I. Zeroual and A. El Allaoui, "Effect of Feature Selection on the Prediction of Direct Normal Irradiance," in Big Data Min-ing and Analytics, vol. 5, no. 4, pp. 309-317, December 2022, doi: 10.26599/BDMA.2022.9020003.

29. Liu, Fei Tony, Ting, Kai Ming, & Zhou, Zhi-Hua. (2008). Isolation Forest. In Pro-ceedings of the 2008 Eighth IEEE International Conference on Data Mining (pp. 413-422).

30. Breunig, Markus M., Kriegel, Hans-Peter, Ng, Raymond T., & Sander, Jörg. (2000). LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 93-104).

31. Jolliffe, Ian T. (2014). Principal Component Analysis. In Principal Component Analysis (pp. 1-19). Springer

32. Gonzalez-Argote D, Gonzalez-Argote J. Generation of graphs from scientific journal metadata with the OAI-PMH system. Seminars in Medical Writing and Education 2023;2:43-43. https://doi.org/10.56294/mw202343.

33. Farhaoui, Y.and All, Big Data Mining and Analytics, 2023, 6(3), pp. I–II, DOI: 10.26599/BDMA.2022.9020045

34. Vargas-Luque A, Carpio-Delgado FD, Villa-Alagón C, Medina-Cacéres R, Vargas-Luque N. Aplicación de la vibración ambiental y la vulnerablidad fisica de la ciudad de Moquegua. Sincretismo 2020;1.

35. Canova-Barrios C, Machuca-Contreras F. Interoperability standards in Health Information Systems: systematic review. Seminars in Medical Writing and Education 2022;1:7-7. https://doi.org/10.56294/mw20227.

36. Flores-Arocutipa J, Pérez RTC, Jinchuña-Huallpa J. Relaciones, impactos y modelos que se abstraen del COVID 19, proyecciones para Perú y Moquegua, marzo-mayo del 2020. Sincretismo 2020;1.

37. Alaoui, S.S., and all. "Hate Speech Detection Using Text Mining and Machine Learning", International Journal of Decision Support System Technology, 2022, 14(1), 80. DOI: 10.4018/IJDSST.286680

38. Alaoui, S.S., and all. ,"Data openness for efficient e-governance in the age of big data", International Journal of Cloud Computing, 2021, 10(5-6), pp. 522–532, https://doi.org/10.1504/IJCC.2021.120391

39. El Mouatasim, A., and all. "Nesterov Step Reduced Gradient Algorithm for Con-vex Programming Problems", Lecture Notes in Networks and Systems, 2020, 81, pp. 140–148. https://doi.org/10.1007/978-3-030-23672-4_11

40. Tarik, A., and all."Recommender System for Orientation Student" Lecture Notes in Networks and Systems, 2020, 81, pp. 367–370. https://doi.org/10.1007/978-3-030-23672-4_27

41. Sossi Alaoui, S., and all. "A comparative study of the four well-known classifica-tion algorithms in data mining", Lecture Notes in Networks and Systems, 2018, 25, pp. 362–373. https://doi.org/10.1007/978-3-319-69137-4_32

42. Inastrilla CRA. Data Visualization in the Information Society. Seminars in Medical Writing and Education 2023;2:25-25. https://doi.org/10.56294/mw202325.

43. Farhaoui, Y., "Securing a Local Area Network by IDPS Open Source", Procedia Computer Science, 2017, 110, pp. 416–421. https://doi.org/10.1016/j.procs.2017.06.106

Downloads

Published

2023-12-28

Issue

Section

Original

How to Cite

1.
Boutahir MK, Hessane A, Lasri I, Benchikh S, Farhaoui Y, Azrour M. Dynamic Threshold Fine-Tuning in Anomaly Severity Classification for Enhanced Solar Power Optimization. Data and Metadata [Internet]. 2023 Dec. 28 [cited 2025 Aug. 20];2:94. Available from: https://dm.ageditor.ar/index.php/dm/article/view/154