Strategic guidelines for intelligent traffic control
DOI:
https://doi.org/10.56294/dm202351Keywords:
Traffic Control, Technological Surveillance, Technological Tools, Traffic Signals, Intelligent Traffic Control, Vehicular CongestionAbstract
The objective of this study was to establish strategic guidelines to solve the existing vehicular mobility problems in the District of Riohacha, proposing the adoption of advanced technologies to optimize traffic management in the city. The methodology of the study consisted in the application of surveys and the review of relevant bibliography. The results allowed the identification of various intelligent traffic control tools used in different regions of the world, determining their applicability and benefits for the context of Riohacha, where there was a notable lack of traffic signals. It was concluded that the implementation of the technological tools proposed in this study could offer effective solutions to the mobility challenges faced by the District of Riohacha
References
1. Castán JA, Ibarra S, Laria J, Guzmán J, Castán E. Control de tráfico basado en agentes inteligentes. POLIBITS 2014; 50:61–8. https://doi.org/10.17562/PB-50-9
2. San Juan YI, Rodríguez FIR. Modelos y herramientas para la vigilancia tecnológica. Ciencias de La Información 2016; 47:11–8.
3. Capel H. Las pequeñas ciudades en la urbanización generalizada y ante la crisis global. Investigaciones geográficas 2009:07–32.
4. Guamaní Clavijo KE, Burbano R. Estimación de los Costos Económicos de la Congestión Vehicular en Quito en el Año 2016. Dominio de las Ciencias 2021;7:763–86.
5. Péres M, Ruiz G, Nesmachnow S, Olivera AC. Multiobjective evolutionary optimization of traffic flow and pollution in Montevideo, Uruguay. Applied Soft Computing 2018;70:472–85. https://doi.org/10.1016/j.asoc.2018.05.044.
6. Gately CK, Hutyra LR, Peterson S, Sue Wing I. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environmental Pollution 2017;229:496–504. https://doi.org/10.1016/j.envpol.2017.05.091.
7. Rossi R, Ceccato R, Gastaldi M. Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown. Sustainability 2020;12:8984. https://doi.org/10.3390/su12218984.
8. Othman B, De Nunzio G, Di Domenico D, Canudas-de-Wit C. Ecological traffic management: A review of the modeling and control strategies for improving environmental sustainability of road transportation. Annual Reviews in Control 2019;48:292–311. https://doi.org/10.1016/j.arcontrol.2019.09.003.
9. Bigazzi AY, Rouleau M. Can traffic management strategies improve urban air quality? A review of the evidence. Journal of Transport & Health 2017;7:111–24. https://doi.org/10.1016/j.jth.2017.08.001.
10. Guériau M, Billot R, El Faouzi N-E, Monteil J, Armetta F, Hassas S. How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transportation Research Part C: Emerging Technologies 2016;67:266–79. https://doi.org/10.1016/j.trc.2016.01.020.
11. Guo Y, Ma J. Leveraging existing high-occupancy vehicle lanes for mixed-autonomy traffic management with emerging connected automated vehicle applications. Transportmetrica A: Transport Science 2020;16:1375–99. https://doi.org/10.1080/23249935.2020.1720863.
12. Cantillo V, Márquez L, Díaz CJ. An exploratory analysis of factors associated with traffic crashes severity in Cartagena, Colombia. Accident Analysis & Prevention 2020;146:105749. https://doi.org/10.1016/j.aap.2020.105749.
13. Ospina-Mateus H, Garcia SB, Jiménez LQ, Salas-Navarro K. Dataset of traffic accidents in motorcyclists in Bogotá, Colombia. Data in Brief 2022;43:108461. https://doi.org/10.1016/j.dib.2022.108461.
14. Ospina-Mateus H, Quintana Jiménez LA, López-Valdés FJ, Morales-Londoño N, Salas-Navarro K. Using Data-Mining Techniques for the Prediction of the Severity of Road Crashes in Cartagena, Colombia. In: Figueroa-García JC, Duarte-González M, Jaramillo-Isaza S, Orjuela-Cañon AD, Díaz-Gutierrez Y, editors. Applied Computer Sciences in Engineering, Cham: Springer International Publishing; 2019, p. 309–20. https://doi.org/10.1007/978-3-030-31019-6_27.
15. Puentes M, Novoa D, Nivia JMD, Hernández CJB, Carrillo O, Mouël FL. Datacentric Analysis to Reduce Pedestrians Accidents: A Case Study in Colombia. In: Corchado JM, Trabelsi S, editors. Sustainable Smart Cities and Territories, Cham: Springer International Publishing; 2022, p. 163–74. https://doi.org/10.1007/978-3-030-78901-5_15.
16. Hernández-Sampieri R, Mendoza C. Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. Mexico, D.F.: McGraw-Hill Education; 2020.
17. Quiñonez Y, Lizarraga C, Peraza J, Zatarain O. Sistema inteligente para el monitoreo automatizado del transporte público en tiempo real. RISTI: Revista Ibérica de Sistemas e Tecnologias de Informação 2019:94–105.
18. Patiño Lopez LF, Torres Rodriguez JA. Diseño e implementación de un sistema embebido basado en IOT para la gestión del transporte público 2019.
19. Sanabria Cortes RA. Semáforos autónomos para control de tráfico en la ciudad de Neiva. Tesis de Grado. Universidad Nacional Abierta y a Distancia UNAD, 2016.
20. Ministerio de transporte. Manual de señalización vial, dispositivos uniformes para la regulación del tránsito en calles, carreteras y ciclorrutas de Colombia. Bogota D.C.: Ministerio de transporte; 2015.
21. Amar Flórez D. Estudios de casos internacionales de Ciudades Inteligentes. Medellín, Colombia: BID; 2016.
22. GSD+. Esquemas de implantación de tecnologías inteligentes de transporte en América Latina: estudios de casos y recomendaciones. Caracas: CAF; 2019.
Published
Issue
Section
License
Copyright (c) 2023 Silfredo Damian Vergara Danies , Daniela Carolina Ariza Celis , Liseth Maria Perpiñan Duitama (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.