Thematic Specialization of Institutions with Academic Programs in the Field of Data Science

Authors

  • Denis Gonzalez Argote Universidad Argentina de la Empresa, Facultad de Ingeniería y Ciencias Exactas, Carrera de Ingeniería Informática. Ciudad Autónoma de Buenos Aires, Argentina Author https://orcid.org/0000-0003-3152-5697

DOI:

https://doi.org/10.56294/dm202324

Keywords:

Data Science, Bibliometrics, Thematic Specialization, Higher Education, University, University Accreditation

Abstract

Introduction: data science careers are on the rise due to the growing demand for technical skills in this area. Data science careers focus on collecting, organizing, and analyzing data to identify patterns and trends, which allows organizations to make informed decisions and develop effective solutions.

Aim: to analyze the thematic specialization of institutions with academic programs in the area of data science.

Methods: the Scopus database was used to conduct a bibliometric analysis aimed at examining the thematic specialization of institutions with academic programs in the field of data science. SciVal, a bibliometric analysis tool, was employed to extract the relevant data. The study period ranged from 2012 to 2021.

Results: nine higher education institutions were found to offer undergraduate or graduate degrees in the field of data science. There was no correlation found between RSI and Field-Weighted Citation Impact (r=0,05355; P=0,8912; 95%CI: -0,6331 to 0,6930). Therefore, it cannot be claimed that specialization in the subject area studied influences the greater impact of research. On the other hand, recent accreditation did not influence greater specialization (r=0,1675; P=0,6667; 95%CI: -0,5588 to 0,7484). Additionally, no differences were found regarding academic level.

Conclusions: the analysis of the thematic specialization of institutions with academic programs in the field of data science shows low scientific production in this field. Moreover, more than half of the analyzed higher education institutions have thematic specialization below the global average. This suggests that there is still a long way to go for these institutions to achieve adequate specialization and compete internationally in the field of data science

References

1. Lee I. Big data: Dimensions, evolution, impacts, and challenges. Business Horizons 2017;60:293-303. https://doi.org/10.1016/j.bushor.2017.01.004.

2. Ferraris A, Mazzoleni A, Devalle A, Couturier J. Big data analytics capabilities and knowledge management: impact on firm performance. Management Decision 2018;57:1923-36. https://doi.org/10.1108/MD-07-2018-0825.

3. Washington Durr AK. A Text Analysis of Data-Science Career Opportunities and US iSchool Curriculum. Journal of Education for Library and Information Science 2020;61:270-93. https://doi.org/10.3138/jelis.2018-0067.

4. Huppenkothen D, Arendt A, Hogg DW, Ram K, VanderPlas JT, Rokem A. Hack weeks as a model for data science education and collaboration. Proceedings of the National Academy of Sciences 2018;115:8872-7. https://doi.org/10.1073/pnas.1717196115.

5. Romero C, Ventura S. Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery 2020;10:e1355. https://doi.org/10.1002/widm.1355.

6. Mbwilo B, Kimaro H, Justo G. Data Science Postgraduate Education at University of Dar es Salaam in Tanzania: Current Demands and Opportunities. En: Nielsen P, Kimaro HC, editores. Information and Communication Technologies for Development. Strengthening Southern-Driven Cooperation as a Catalyst for ICT4D, Cham: Springer International Publishing; 2019, p. 349-60. https://doi.org/10.1007/978-3-030-19115-3_29.

7. Irizarry RA. The Role of Academia in Data Science Education. Harvard Data Science Review 2020;2. https://doi.org/10.1162/99608f92.dd363929.

8. Wang L. Twinning data science with information science in schools of library and information science. Journal of Documentation 2018;74:1243-57. https://doi.org/10.1108/JD-02-2018-0036.

9. Medicine NA of S Engineering, and, Education D of B and SS and, Education B on S, Sciences D on E and P, Statistics C on A and T, Analytics B on MS and, et al. Data Science for Undergraduates: Opportunities and Options. National Academies Press; 2018.

10. Miniterio de Educación - Secretaría de Políticas Universitarias. Buscador de títulos universitarios 2022. http://sipes.siu.edu.ar/buscar_titulos_form.php?ah=st640cad288e3fe7.89162175&ai=dngu%7C%7C3731.

11. Volkova NP, Rizun NO, Nehrey MV. Data science: opportunities to transform education. CTE Workshop Proceedings 2019;6:48-73. https://doi.org/10.55056/cte.368.

12. Daniel BK. Big Data and data science: A critical review of issues for educational research. British Journal of Educational Technology 2019;50:101-13. https://doi.org/10.1111/bjet.12595.

13. Sarker IH. Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN COMPUT SCI 2021;2:377. https://doi.org/10.1007/s42979-021-00765-8.

14. Yoon J, Suh M-G. Determinants of organizational performance: some implications for top executive leadership in Korean firms. Asia Pacific Business Review 2019;25:251-72. https://doi.org/10.1080/13602381.2018.1548545.

15. Leahey E, Keith B, Crockett J. Specialization and promotion in an academic discipline. Research in Social Stratification and Mobility 2010;28:135-55. https://doi.org/10.1016/j.rssm.2009.12.001.

16. Caviggioli F, Colombelli A, De Marco A, Scellato G, Ughetto E. Co-evolution patterns of university patenting and technological specialization in European regions. J Technol Transf 2023;48:216-39. https://doi.org/10.1007/s10961-021-09910-0.

17. Lepori B. The heterogeneity of European Higher Education Institutions: a configurational approach. Studies in Higher Education 2022;47:1827-43. https://doi.org/10.1080/03075079.2021.1968368.

18. Inaba Y. Higher education in a depopulating society: Survival strategies of Japanese universities. Research in Comparative and International Education 2020;15:136-57. https://doi.org/10.1177/1745499920910581.

19. Hossain MdN, Ahmed SMZ. Use of scholarly communication and citation-based metrics as a basis for university ranking in developing country perspective. Global Knowledge, Memory and Communication 2020;69:461-82. https://doi.org/10.1108/GKMC-09-2019-0112.

20. Baños Martínez MA, Michelena Fernández E, Baños Martínez MA, Michelena Fernández E. El proceso de acreditación de carreras. Revista Cubana de Educación Superior 2021;40.

21. Guaglianone A. Las políticas públicas de evaluación y acreditación de las carreras de grado en Argentina. Calidad en la educación 2012:187-217. https://doi.org/10.4067/S0718-45652012000100006.

22. Bidiña A. El discurso de evaluación de la Comisión Nacional de Evaluación y Acreditación Universitaria (CONEAU) en la función investigación. Estudios del Discurso en Latinoamérica, Buenos Aires: 2015, p. 24.

23. Bustamante LA. La evaluación de la investigación en las universidades privadas: Presente y horizonte según el discurso de CONEAU. Education Policy Analysis Archives 2016;24:96-96. https://doi.org/10.14507/epaa.24.2325.

24. Beatriz -Peretto C, Caro NP. El proceso de acreditación de una carrera de grado en Argentina. Educación y sociedad 2022;20:42-64.

25. Figueroa Escudero E, García Martínez V, Figueroa Escudero E, García Martínez V. Semejanzas y diferencias de la política curricular entre México y Brasil. Revista de la educación superior 2017;46:127-32. https://doi.org/10.1016/j.resu.2017.08.001.

26. Soto GYG, López RIG, Rodríguez AL. Calidad en la educación superior en línea: un análisis teórico. Revista Educación 2020;44:441-56. https://doi.org/10.15517/revedu.v44i2.39714.

Downloads

Published

2023-03-15

Issue

Section

Original

How to Cite

1.
Gonzalez Argote D. Thematic Specialization of Institutions with Academic Programs in the Field of Data Science. Data and Metadata [Internet]. 2023 Mar. 15 [cited 2024 Dec. 21];2:24. Available from: https://dm.ageditor.ar/index.php/dm/article/view/180