Bamboo cellulose composite flame-retardant filament for 3D printing

Authors

DOI:

https://doi.org/10.56294/dm2025192

Keywords:

Bamboo cellulose composite, Flame-retardant filament, Print 3D

Abstract

To find sustainable alternatives to traditional polymers, this study evaluated the potential of bamboo cellulose for the manufacture of flame-retardant filaments intended for 3D printing. Blending of five bamboo cellulose (BC)-based filament formulations was performed: S0 (C 5%, AR 95%), S1 (C 5%, AR 90%, U 0.4%, B 4%), S2 (C 4.8%, AR 86.45%, U 0.76%, B 7. 68%), S3 (C 5%, AR 82%, U 1%, B 12%) and S4 (C 5%, AR 69%, U 1%, B 25%). at 31.90C is left to stand for 30 min, 20 mL is placed inside the PET extruder and extruded through a 1 mm hole bamboo cellulose filament (BC). The results obtained using PAST 4 software revealed a normality of 95% in the data. The extruded filament titer (T) showed an average of 1.88 Ktex with no significant differences between formulations (P>0.05). Regarding combustion (C), samples S0 and S4 reached the lowest times, both 32 seconds. Regarding incandescence (I), a significant decrease in time was observed, from a maximum of 24.333 seconds in sample S0 to a minimum of 1.333 seconds in sample S4, representing a reduction of 94.521%. This behavior is attributed to the increase of urea (U) and borax (B) in the formulations. It is concluded that bamboo cellulose exhibits excellent flame-retardant properties and is suitable for processing in 3D printers.

References

1. Pahuja V, Ghosh PK. Assessment of Bond Strength in Bamboo-Reinforced Concrete. Int J Comput Exp Sci Eng [Internet]. 2024;10(4):1801 – 1813. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214364286&doi=10.22399%2Fijcesen.498&partnerID=40&md5=0de4dbe0e19466c334e6d6ed3d6946aa

2. Manandhar R, Kim J-H, Kim J-T. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J Asian Archit Build Eng [Internet]. 2019;18(2):49–59. Available from: https://doi.org/10.1080/13467581.2019.1595629 DOI: https://doi.org/10.1080/13467581.2019.1595629

3. Fang C-H, Jiang Z-H, Sun Z-J, Liu H-R, Zhang X-B, Zhang R, et al. An overview on bamboo culm flattening. Constr Build Mater. 2018 May;171:65–74. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.085

4. Yuan J, Chen L, Mi B, Lei Y, Yan L, Fei B. Synergistic effects of bamboo cells during shrinkage process. Ind Crops Prod [Internet]. 2023;193:116232. Available from: https://www.sciencedirect.com/science/article/pii/S0926669022017150 DOI: https://doi.org/10.1016/j.indcrop.2022.116232

5. Zong Y, Chen X, Luo X, Su Q, Zhang X, Yan Y, et al. Effect of Bamboo Culm Grading on the Properties of Flattened Bamboo Boards. FORESTS. 2023 Jun;14(6). DOI: https://doi.org/10.3390/f14061120

6. Zhou Q, Fu F, Li W, Liu P, Li J, Xu Y. Longitudinal compression constitutive model of original bamboo and buckling simulation of bamboo column. Wood Mater Sci & Eng [Internet]. 2023;18(3):910–8. Available from: https://doi.org/10.1080/17480272.2022.2087538 DOI: https://doi.org/10.1080/17480272.2022.2087538

7. Zhang Q, Chen J, Li D, Sun L, Ren Y, Cheng C, et al. Simultaneous enhancement of mechanical strength and flame retardancy of lyocell fiber via filling fire-resistant cellulose-based derivative. Ind Crops Prod [Internet]. 2023;199. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153322364&doi=10.1016%2Fj.indcrop.2023.116757&partnerID=40&md5=9ad26e9148c0a91ec2d922ad77dcaef2

8. Basak S, Ali SW. Sodium Lignin Sulfonate (SLS) and Pomegranate Rind Extracts (PRE) Bio-macro-molecule: A Novel Composition for Making Fire Resistant Cellulose Polymer. Combust Sci Technol [Internet]. 2022;194(15):3206 – 3224. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106302670&doi=10.1080%2F00102202.2021.1922397&partnerID=40&md5=f18f95db4ae67932b9c0384aa4d30d9d

9. Moreno P, Villamizar N, Perez J, Bayona A, Roman J, Moreno N, et al. Fire-resistant cellulose boards from waste newspaper, boric acid salts, and protein binders. Clean Technol Environ Policy [Internet]. 2021;23(5):1537 – 1546. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101208402&doi=10.1007%2Fs10098-021-02046-7&partnerID=40&md5=e9d6c73caeaa3003c734a37117738cf5

10. Yu LL, Lu F, Qin DC, Ren HQ, Fei BH. COMBUSTIBILITY OF BORON-CONTAINING FIRE RETARDANT TREATED BAMBOO FILAMENTS. WOOD FIBER Sci. 2017;49(2):125–33.

11. Fei B, Liu Z, Jiang Z, Cai Z, Liu X, Yu Y. MECHANICAL PROPERTIES OF MOSO BAMBOO TREATED WITH CHEMICAL AGENTS. WOOD FIBER Sci. 2013;45(1):34–41.

12. Prabhakar MN, Yu R, Lee DW, Song J il. Hybrid eco-friendly coating on bamboo fabric through Taguchi formulations for flame and thermal resistance. Cellulose [Internet]. 2023;30(9):6065–80. Available from: https://doi.org/10.1007/s10570-023-05242-4 DOI: https://doi.org/10.1007/s10570-023-05242-4

13. Hongqiang Q, Ming G. The combustibility of cotton cellulose and wool treated with flame-retardants. In: Huang P, Wang Y, Li SC, Zheng C, Mao ZH, editors. PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 6, PTS A AND B. 2006. p. 1430–4. (PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY SERIES; vol. 6).

14. Castro DO, Karim Z, Medina L, Haggstrom J-O, Carosio F, Svedberg A, et al. The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites. Compos Sci Technol. 2018 Jul;162:215–24. DOI: https://doi.org/10.1016/j.compscitech.2018.04.032

15. Yu Z, Liu J, He H, Ma S, Yao J. Flame-retardant PNIPAAm/sodium alginate/polyvinyl alcohol hydrogels used for fire-fighting application: Preparation and characteristic evaluations. Carbohydr Polym [Internet]. 2021;255. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097340518&doi=10.1016%2Fj.carbpol.2020.117485&partnerID=40&md5=813e05606ec62405bb49d0178097963b

16. Zhang H, Wang L, Van Herle J, Marechal F, Desideri U. Techno-economic comparison of 100% renewable urea production processes. Appl Energy. 2021 Feb;284. DOI: https://doi.org/10.1016/j.apenergy.2020.116401

17. Solomon CM. Urea uptake and urease activity in the Chesapeake Bay. J Mar Res. 2019;77(1):139–68. DOI: https://doi.org/10.1357/002224019828474340

18. Gadhave R V, Vineeth SK. Synthesis and characterization of xanthan gum stabilized polyvinyl acetate-based wood adhesive. Polym Bull. 2023; DOI: https://doi.org/10.1007/s00289-023-05064-1

19. Faria S, de Oliveira Petkowicz CL, de Morais SA, Hernandez Terrones MG, de Resende MM, de Franca FP, et al. Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym. 2011;86(2):469–76. DOI: https://doi.org/10.1016/j.carbpol.2011.04.063

20. Khalid N, Zahoor T, Pasha I, Shahid M. RHEOLOGICAL CHARACTERIZATION AND MICROSTRUCTURAL DEPICTION OF XANTHAN GUM AND ITS HYDROLYSATES. PAKISTAN J Agric Sci. 2020 Mar;57(2):561–71.

21. Krstonosic V, Milanovic M, Dokic L. Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction. FOOD Hydrocoll. 2019 Feb;87:108–18. DOI: https://doi.org/10.1016/j.foodhyd.2018.07.040

22. Yu L, Cai J, Li H, Lu F, Qin D, Fei B. Effects of boric acid and/or borax treatments on the fire resistance of bamboo filament. BioResources [Internet]. 2017;12(3):5296 – 5307. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026760543&doi=10.15376%2Fbiores.12.3.5296-5307&partnerID=40&md5=8b276111959dd64a567faeee994ee5dc

23. Li C, Zhou X, Yang C, Li H, Yu L, Fei B. Effects of different flame retardant treatments on the combustibility of bamboo filament. Wood Res [Internet]. 2021;66(2):255 – 265. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105954934&doi=10.37763%2Fwr.1336-4561%2F66.2.255266&partnerID=40&md5=93e7a6c990ea58dfda0514ab6adae2c2

24. Saleh M, Anwar S, AlFaify AY, Al-Ahmari AM, Abd Elgawad AEE. Development of PLA/recycled-desized carbon fiber composites for 3D printing: Thermal, mechanical, and morphological analyses. J Mater Res Technol [Internet]. 2024;29:2768 – 2780. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184518590&doi=10.1016%2Fj.jmrt.2024.01.267&partnerID=40&md5=f33453a6cf34c4854c24ce64b2b26c6a

25. Raghunathan V, Ayyappan V, Rangappa SM, Siengchin S. Development of fiber-reinforced polylactic acid filaments using untreated/silane-treated trichosanthes cucumerina fibers for additive manufacturing. J Elastomers Plast [Internet]. 2024; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183056516&doi=10.1177%2F00952443241229186&partnerID=40&md5=3eba53bb63ae036fccbcf64266c04947

26. Ayyappan V, Rangappa SM, Tengsuthiwat J, Fiore V, Siengchin S. Investigation of thermo-mechanical and viscoelastic properties of 3D-printed Morinda citrifolia particle reinforced poly(lactic acid) composites. Polym Compos [Internet]. 2024; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182844752&doi=10.1002%2Fpc.28133&partnerID=40&md5=5b6933cc539e8e6e29fc3021a32341d8

27. Yilmaz S, Gul O, Eyri B, Gamze Karsli Yilmaz N, Yilmaz T. Comprehensive characterization of 3D-printed bamboo/poly(lactic acid) bio composites. Polym Eng Sci [Internet]. 2023;63(9):2958 – 2972. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165297523&doi=10.1002%2Fpen.26419&partnerID=40&md5=528bf578d8e5d0c632eb9972f499e6e9

28. Colon AR, Kazmer DO, Peterson AM, Seppala JE. Characterization of die-swell in thermoplastic material extrusion. Addit Manuf [Internet]. 2023;73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166469919&doi=10.1016%2Fj.addma.2023.103700&partnerID=40&md5=3913bdafa26c56b0ac7156392e813ac3

29. Burrow T. 8 - Flame resistant manmade cellulosic fibres. In: Kilinc FS, editor. Handbook of Fire Resistant Textiles [Internet]. Woodhead Publishing; 2013. p. 221–44. (Woodhead Publishing Series in Textiles). Available from: https://www.sciencedirect.com/science/article/pii/B9780857091239500080 DOI: https://doi.org/10.1533/9780857098931.2.221

30. Zheng W, Zhang S, Deng J. Analysis of the adsorption mechanism of phosphoric acid-modified bamboo charcoal for chlorogenic acid based on density functional theory. Chem Biol Technol Agric [Internet]. 2024;11(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182723408&doi=10.1186%2Fs40538-024-00538-4&partnerID=40&md5=4d487cd57a2699226dcbbf6df27e031f

31. Yamamoto Y, Ichiura H, Ohtani Y. Improvement of wet paper strength using a phosphoric acid-urea solution. CELLULOSE. 2019 May;26(8):5105–16. DOI: https://doi.org/10.1007/s10570-019-02423-y

32. Su Y, Shi F. Applications of Chiral Phosphoric Acid to Asymmetric Reactions. CHINESE J Org Chem. 2010;30(4):486–98.

33. Gao F, Li X, Zhang X, Liu W, Liu C. Enhancement on both phosphoric acid retention and proton conduction of polybenzimidazole membranes by plasma treatment. COLLOIDS SURFACES A-PHYSICOCHEMICAL Eng Asp. 2020 Oct;603. DOI: https://doi.org/10.1016/j.colsurfa.2020.125197

34. Spirio A, Arrigo R, Frache A, Tuccinardi L, Tuffi R. Plastic waste recycling in additive manufacturing: Recovery of polypropylene from WEEE for the production of 3D printing filaments. J Environ Chem Eng [Internet]. 2024;12(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188968171&doi=10.1016%2Fj.jece.2024.112474&partnerID=40&md5=81c6703af2482e7f45644af17d77a85b

35. Nguyen TT, Langenfeld JG, Reinhart BC, Lyden EI, Campos AS, Wadman MC, et al. An evaluation of the usability and durability of 3D printed versus standard suture materials. Wound Repair Regen [Internet]. 2024;32(3):229 – 233. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189533685&doi=10.1111%2Fwrr.13175&partnerID=40&md5=4f2d43c4b883b23d5dc56877f90217ca

36. El Shakhs A, Elessawy NA, El-Saka MF, Hassan GE, Ali MAM. Developing Eco-Friendly 3D-Printing Composite Filament: Utilizing Palm Midrib to Reinforce High-Density Polyethylene Matrix in Design Applications. Polymers (Basel). 2024;16(8). DOI: https://doi.org/10.3390/polym16081135

37. Begum SA, Krishnan PSG, Kanny K. Properties of poly (lactic Acid)/ hydroxyapatite biocomposites for 3D printing feedstock material. J Thermoplast Compos Mater [Internet]. 2024;37(2):644 – 668. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162615759&doi=10.1177%2F08927057231182165&partnerID=40&md5=31b4a1512fb7314b79b6a3cfec447371

38. Li H, Ma X-X, Gu Z-C, Wang X, Li J-Z, Jiang J, et al. Pyrolysis and Combustion Characteristics of Boric Acid and Borax Treated Decorative Bamboo Filaments. BioResources [Internet]. 2020;15(4):8146 – 8160. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109560392&doi=10.15376%2Fbiores.15.4.8146-8160&partnerID=40&md5=5947002f1d56ba505b73345cc3f799f8

39. Lewis DM, Hawkes JA, Hawkes L, Mama J. A new approach to flame-retardant cellulosic fabrics in an environmentally safe manner. Color Technol [Internet]. 2020;136(6):512 – 525. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092669116&doi=10.1111%2Fcote.12504&partnerID=40&md5=7cf9a61479c018bdf8b74fc7cd8d4c4a

40. Grdadolnik J, Maréchal Y. Urea and urea-water solutions-an infrared study. J Mol Struct. 2002 Sep;615(1–3):177–89. DOI: https://doi.org/10.1016/S0022-2860(02)00214-4

41. Wu Z, Deng X, Li L, Yu L, Chen J, Zhang B, et al. INVESTIGATION THE FIRE HAZARD OF PLYWOODS USING A CONE CALORIMETER. WOOD Res. 2021;66(6):933–42. DOI: https://doi.org/10.37763/wr.1336-4561/66.6.933942

42. Tanpichai S, Phoothong F, Boonmahitthisud A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep. 2022 May;12(1). DOI: https://doi.org/10.1038/s41598-022-12688-2

Downloads

Published

2025-04-21

Issue

Section

Original

How to Cite

1.
Esparza Encalada WR, Herrera Villarreal WA, Jaramillo Tituaña BA, Naranjo Chávez PE. Bamboo cellulose composite flame-retardant filament for 3D printing. Data and Metadata [Internet]. 2025 Apr. 21 [cited 2026 Feb. 14];4:192. Available from: https://dm.ageditor.ar/index.php/dm/article/view/192