Mobile app for real-time academic attendance registration based on MobileFaceNet Convolutional neural network

Authors

DOI:

https://doi.org/10.56294/dm2025193

Keywords:

Artificial Intelligence, Facial Recognition, Student Attendance Registration, Mobile App, Convolutional Neural Networks, MTCNN, MobileFaceNet

Abstract

The attendance record monitors the student's participation in university academic activities, reflecting the commitment to their professional training. However, traditional systems require moderate time to perform this activity and can be susceptible to fraud and errors. In today's technological landscape, facial recognition has become an effective solution to problems in various fields. Currently, all university professors own smartphones. Considering this advantage, this article proposes to develop a mobile application for the registration of academic attendance using advanced artificial intelligence technologies such as Multitasking Cascade Convolutional Networks (MTCNN) in facial detection, MobileFaceNet in facial feature extraction (facial vector) and the Euclidean distance function in the calculation of similarity between obtained vectors. MobileFaceNet was evaluated in Python, using a personalized dataset of top-level students of the Software career of the Universidad Técnica del Norte, achieving an accuracy of 98.9% and 99.4% in LWF. The models were then integrated into a mobile app developed with Android Studio. Finally, the time required to register attendance was compared using the university academic platform (SIIU) and the facial recognition mobile application. The benchmarking showed a 24-second reduction of 33% in attendance registration time.

References

1. Pusdá-Chulde MR, Salazar-Fierro FA, Sandoval-Pillajo L, Herrera-Granda EP, García-Santillán ID, De Giusti A. Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review. En: Nummenmaa J, Pérez-González F, Domenech-Lega B, Vaunat J, Oscar Fernández-Peña F, editores. Adv. Appl. Comput. Sci. Electron. Ind. Eng., vol. 1078, Cham: Springer International Publishing; 2020, p. 51-70. https://doi.org/10.1007/978-3-030-33614-1_4.

2. Herrera-Granda Israel D. and Chicaiza-Ipiales JA and H-GEP and L-LLL and C-PJA and G-SID and P-ODH. Artificial Neural Networks for Bottled Water Demand Forecasting: A Small Business Case Study. En: Rojas Ignacio and Joya G and CA, editor., Cham: Springer International Publishing; 2019, p. 362-73.

3. Vila D, Cisneros S, Granda P, Ortega C, Posso-Yépez M, García-Santillán I. Detection of Desertion Patterns in University Students Using Data Mining Techniques: A Case Study. En: Botto-Tobar M, Pizarro G, Zúñiga-Prieto M, D’Armas M, Zúñiga Sánchez M, editores. Technol. Trends, vol. 895, Cham: Springer International Publishing; 2019, p. 420-9. https://doi.org/10.1007/978-3-030-05532-5_31.

4. Montenegro S, Pusdá-Chulde M, Caranqui-Sánchez V, Herrera-Tapia J, Ortega-Bustamante C, García-Santillán I. Android Mobile Application for Cattle Body Condition Score Using Convolutional Neural Networks. En: Narváez FR, Urgilés F, Bastos-Filho TF, Salgado-Guerrero JP, editores., Cham: Springer Nature Switzerland; 2023, p. 91-105. https://doi.org/10.1007/978-3-031-32213-6_7.

5. Chacua B, García I, Rosero P, Suárez L, Ramírez I, Simbaña Z, et al. People Identification through Facial Recognition using Deep Learning, 2019, p. 1-6. https://doi.org/10.1109/LA-CCI47412.2019.9037043.

6. Cevallos M, Sandoval-Pillajo L, Caranqui-Sánchez V, Ortega-Bustamante C, Pusdá-Chulde M, García-Santillán I. Morphological Defects Classification in Coffee Beans Based on Convolutional Neural Networks. En: Valencia-García R, Borodulina T, Del Cioppo-Morstadt J, Moran-Castro CE, Vera-Lucio N, editores. Technol. Innov., vol. 2276, Cham: Springer Nature Switzerland; 2025, p. 3-15. https://doi.org/10.1007/978-3-031-75702-0_1.

7. Ulloa F, Sandoval-Pillajo L, Landeta-López P, Granda-Peñafiel N, Pusdá-Chulde M, García-Santillán I. Identification of Diabetic Retinopathy from Retinography Images Using a Convolutional Neural Network. En: Valencia-García R, Borodulina T, Del Cioppo-Morstadt J, Moran-Castro CE, Vera-Lucio N, editores. Technol. Innov., vol. 2276, Cham: Springer Nature Switzerland; 2025, p. 121-36. https://doi.org/10.1007/978-3-031-75702-0_10.

8. Salazar-Fierro F, Cumbal C, Trejo-España D, León-Fernández C, Pusdá-Chulde M, García-Santillán I. Detection of Scoliosis in X-Ray Images Using a Convolutional Neural Network. En: Valencia-García R, Borodulina T, Del Cioppo-Morstadt J, Moran-Castro CE, Vera-Lucio N, editores. Technol. Innov., vol. 2276, Cham: Springer Nature Switzerland; 2025, p. 167-83. https://doi.org/10.1007/978-3-031-75702-0_13.

9. Slimi Z. The Impact of Artificial Intelligence on Higher Education: An Empirical Study. Eur J Educ Sci 2023;10:1857-6036. https://doi.org/10.19044/ejes.v10no1a17.

10. Srinivasa KG, Kurni M, Saritha K. Harnessing the Power of AI to Education 2022:311-42. https://doi.org/10.1007/978-981-19-6734-4_13.

11. Tarmissi K, Allaaboun H, Abouellil O, Alharbi S, Soqati M. Automated Attendance Taking System using Face Recognition. 2024 21st Learn Technol Conf LT 2024:19-24. https://doi.org/10.1109/LT60077.2024.10469452.

12. Guaichico E. Aplicación móvil de reconocimiento facial para el control de asistencia a clases de los estudiantes de la Universidad Técnica del Norte utilizando técnicas de Inteligencia Artificial. Universidad Técnica del Norte, 2024.

13. Indra E, Yasir M, Andrian A, Sitanggang D, Sihombing O, Tamba SP, et al. Design and Implementation of Student Attendance System Based on Face Recognition by Haar-Like Features Methods. Mecn 2020 - Int Conf Mech Electron Comput Ind Technol 2020:336-42. https://doi.org/10.1109/MECNIT48290.2020.9166595.

14. SECRETARÍA DE ESTADO DE DIGITALIZACIÓN E INTELIGENCIA ARTIFICIAL. Inteligencia artificial para mejorar la interoperabilidad en el sector público europeo | datos.gob.es 2024.

15. Chen S, Liu Y, Gao X, Han Z. MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. Lect Notes Comput Sci Subser Lect Notes Artif Intell Lect Notes Bioinforma 2018;10996 LNCS:428-38. https://doi.org/10.1007/978-3-319-97909-0_46.

16. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2018:4510-20. https://doi.org/10.1109/CVPR.2018.00474.

17. Schroff F, Kalenichenko D, Philbin J. FaceNet: A Unified Embedding for Face Recognition and Clustering. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2015;07-12-June-2015:815-23. https://doi.org/10.1109/cvpr.2015.7298682.

18. sirius-ai, Hereñu D. Tensorflow implementation for MobileFaceNet 2019.

19. Páez F. Implementación de framework enfocado al desarrollo rápido de aplicaciones móviles para medianas empresas. Universidad Politécnica de Sinaloa, 2019.

20. Shun L, Aung N. Child Face Recognition System Using Mobilefacenet.pdf 2019.

21. Albahrani A, Zainab A, Zainab Y. Smart Attendance Management System 2022.

22. Made I, Sandhiyasa S, Waas DV. Real Time Face Recognition for Mobile Application Based on Mobilenetv2. J Multidisiplin Madani 2023;3:1855-64. https://doi.org/10.55927/MUDIMA.V3I9.5924.

23. Chowdhury S, Nath S, Dey A, Das A. Development of an Automatic Class Attendance System using CNN-based Face Recognition. ETCCE 2020 - Int Conf Emerg Technol Comput Commun Electron 2020. https://doi.org/10.1109/ETCCE51779.2020.9350904.

24. Alniemi O, Mahmood HF. Class Attendance System Based on Face Recognition. Rev Intell Artif 2023;37:1245-53. https://doi.org/10.18280/RIA.370517.

25. Zhang K, Zhang Z, Li Z, Qiao Y. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. IEEE Signal Process Lett 2016;23:1499-503. https://doi.org/10.1109/LSP.2016.2603342.

26. Jin R, Li H, Pan J, Ma W, Lin J. Face Recognition Based on MTCNN and FaceNet 2021.

27. Xiao J, Jiang G, Liu H. A Lightweight Face Recognition Model based on MobileFaceNet for Limited Computation Environment 2022. https://doi.org/10.4108/eai.28-2-2022.173547.

28. Ahmad ZM, Balogun1 AO, Muazu AA, Mamman H, Oyekunle RA. Mobilefacenet-Based Facial Recognition System for Contactless Access Control. Platf J Sci Technol 2024;7:9-9. https://doi.org/10.61762/PJSTVOL7ISS1ART27053.

Downloads

Published

2025-02-13

Issue

Section

Original

How to Cite

1.
Guaichico E, Pusdá-Chulde M, Ortega-Bustamante M, Granda P, García-Santillán I. Mobile app for real-time academic attendance registration based on MobileFaceNet Convolutional neural network. Data and Metadata [Internet]. 2025 Feb. 13 [cited 2025 Apr. 28];4:193. Available from: https://dm.ageditor.ar/index.php/dm/article/view/193