Quantum Key Distribution For Enabling Secure Network  Function Vitalization Orchestration Over A Network

Authors

  • Hayder A. Nahi Computer Center, Al Qasim Green University, Babylon 51013, Iraq Author
  • Akmam Majed Mousa Computer Center, Al Qasim Green University, Babylon 51013, Iraq Author
  • Ebtehal Akeel Hamed College of Physical Education and Sport Sciences, Al Qasim Green University, Babylon 51013, Iraq Author
  • Ali Khalid Ali Computer Center, Al Qasim Green University, Babylon 51013, Iraq Author
  • Sarmad Jawad Department of Cyber Security, College of Sciences, Al-Mustaqbal University, 51001, Babylon, Iraq Author
  • Ahmed Mahdi Abdulkadium Computer Center, Al Qasim Green University, Babylon 51013, Iraq Author
  • Rusul A. Salman Computer Center, Al Qasim Green University, Babylon 51013, Iraq Author

DOI:

https://doi.org/10.56294/dm2025202

Keywords:

QKD, NFV, SDN, Quantum Algorithms , NSO

Abstract

Quantum Key Distribution (QKD) provides an state-of-the-art solution that work toward to enhance security of network  and performance contrast to conventional systems. This paper focal point on the utilize of QKD to authorize secure orchestration and authorize network functions virtualization (NFV). The QKD-based solution is contrast with presenting solutions utilizing applying science and security KPIs.
The outcomes display that the QKD solution exceed conventional solutions, with throughput stretch out 250 Mbit/s contrast to 150 Mbit/s, and response time of 4 ms versus 10 ms. The bit error rate (BER) registered a notable depletion to 1.2e-10 contrast to 1.8e-9, and an interception rate of 0% against 5% in conventional systems was attained.
The work as well appears that the time wanted to distribute quantum keys is at most 4 ms, with a key exchange success rate of 99.8%. The model also give a demonstration of peak attack resistance with 100 successfully blocked hacking attempts registered. in spite of an extra 10ms data encryption processing time and a small 3% throughput effect, the general performance remainder marvelous with a network function deployment time of 150ms and only 0.1% packet loss.
These measure reveal the efficacy of QKD in enhancing the security and efficiency of virtual networks. The paper give empirical perceptions to hold up the implementation of quantum security techniques in time ahead network infrastructures.

References

Joshi, H. (2024). Emerging Technologies Driving Zero Trust Maturity Across Industries.‏

Garcia-Cid, M. I., Ortiz, L., Saez, J., & Martin, V. (2024). Strategies for the Integration of quantum networks for a future quantum internet. arXiv preprint arXiv2401.06444.‏

Urgelles, H., Maheshwari, S., Nande, S. S., Bassoli, R., Fitzek, F. H., & Monserrat, J. F. (2024). In‐Network Quantum Computing for Future 6G Networks. Advanced Quantum Technologies, 2300334.

Blika, A., Palmos, S., Doukas, G., Lamprou, V., Pelekis, S., Kontoulis, M., ... & Askounis, D. (2024). Federated Learning For Enhanced Cybersecurity And Trustworthiness In 5G and 6G Networks A Comprehensive Survey. IEEE Open Journal of the Communications Society.‏

Trizna, A., & Ozols, A. (2018). An overview of quantum key distribution protocols. Inf. Technol. Manage. Sci, 21, 37-44.‏

Tajima, A., Kondoh, T., Ochi, T., Fujiwara, M., Yoshino, K., Iizuka, H., ... & Sasaki, M. (2017). Quantum key distribution network for multiple applications. Quantum Science and Technology, 2(3), 034003.‏

Aguado, A., Hugues-Salas, E., Haigh, P. A., Marhuenda, J., Price, A. B., Sibson, P., ... & Simeonidou, D. (2017). Secure NFV orchestration over an SDN-controlled optical network with time-shared quantum key distribution resources. Journal of Lightwave Technology, 35(8), 1357-1362.‏

Wright, P., White, C., Parker, R. C., Pegon, J. S., Menchetti, M., Pearse, J., ... & Lord, A. (2021). 5G network slicing with QKD and quantum-safe security. Journal of Optical Communications and Networking, 13(3), 33-40.‏

Wang, H., Zhao, Y., & Nag, A. (2019). Quantum-key-distribution (qkd) networks enabled by software-defined networks (sdn). Applied Sciences, 9(10), 2081.‏

Tajima, A., Kondoh, T., Ochi, T., Fujiwara, M., Yoshino, K., Iizuka, H., ... & Sasaki, M. (2017). Quantum key distribution network for multiple applications. Quantum Science and Technology, 2(3), 034003.‏

Zerifi, M., Ezzouhairi, A., & Boulaalam, A. (2020, October). Overview on SDN and NFV based architectures for IoT environments Challenges and solutions. In 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS) (pp. 1-5). IEEE.‏

Jawdhari, H. A., & Abdullah, A. A. (2021). The application of network functions virtualization on different networks, and its new applications in blockchain A survey. Management.‏

Jawdhari, H. A., & Abdullah, A. A. (2022, November). New Security Mechanism of Health Data Based on Blockchain–NFV. In International Conference on New Trends in Information and Communications Technology Applications (pp. 230-247). Cham Springer Nature Switzerland.‏

Jawdhari, H. A., & Abdullah, A. A. (2021). A novel blockchain architecture based on network functions virtualization (NFV) with auto smart contracts. Periodicals of Engineering and Natural Sciences (PEN), 9(4), 834-844.‏

Peelam, M. S., Rout, A. A., & Chamola, V. (2024). Quantum computing applications for Internet of Things. IET Quantum Communication, 5(2), 103-112.‏

Beck, T., Baroni, A., Bennink, R., Buchs, G., Pérez, E. A. C., Eisenbach, M., ... & Zimmer, C. (2024). Integrating quantum computing resources into scientific HPC ecosystems. Future Generation Computer Systems, 161, 11-25.‏

Pasin, A., Ferrari Dacrema, M., Cremonesi, P., & Ferro, N. (2024). QuantumCLEF 2024: Overview of the Quantum Computing Challenge for Information Retrieval and Recommender Systems at CLEF. In CEUR WORKSHOP PROCEEDINGS (Vol. 3740, pp. 3032-3053). CEUR-WS.‏

Zhang, Y., Bian, Y., Li, Z., Yu, S., & Guo, H. (2024). Continuous-variable quantum key distribution system: Past, present, and future. Applied Physics Reviews, 11(1).‏

Rusca, D., & Gisin, N. (2024). Quantum Cryptography: an overview of Quantum Key Distribution. arXiv preprint arXiv:2411.04044.‏

Yang, J., Jiang, Z., Benthin, F., Hanel, J., Fandrich, T., Joos, R., ... & Ding, F. (2024). High-rate intercity quantum key distribution with a semiconductor single-photon source. Light: Science & Applications, 13(1), 150.‏

Nahi, H. A., Fadhil, N. H., Saeed, M. M. & Salman, R. A. (2025). A Novel Blockchain-Based System for Developing a Virtual Judge. Journal of Computer Science, 21(2), 380-387. https://doi.org/10.3844/jcssp.2025.380.387

Nahi, H. A., Al-dolaimy, F., Abbas, F. H., Almohamadi, M., Hasan, M. A., Alkhafaji, M. A., & Guneser, M. T. (2023). A multi-objective optimization for enhancing the efficiency of service in flying Ad-Hoc network environment. EAI Endorsed Transactions on Scalable Information Systems, 10(5).‏

Mohammed, A. F., Nahi, H. A., Mosa, A. M., & Kadhim, I. Secure E-healthcare System Based on Biometric Approach. Data and Metadata 2023; 2: 56-56.‏

Downloads

Published

2025-02-14

Issue

Section

Original

How to Cite

1.
A. Nahi H, Majed Mousa A, Akeel Hamed E, Khalid Ali A, Jawad S, Mahdi Abdulkadium A, et al. Quantum Key Distribution For Enabling Secure Network  Function Vitalization Orchestration Over A Network. Data and Metadata [Internet]. 2025 Feb. 14 [cited 2025 Mar. 20];4:202. Available from: https://dm.ageditor.ar/index.php/dm/article/view/202