Discriminative ability of a nutritional risk questionnaire applied to patients with celiac disease

Authors

  • Carmen Viteri Facultad de Ciencias de la Salud, Carrera de Nutrición y Dietética, Universidad Técnica de Ambato, Ambato - Ecuador Author
  • Cristina Arteaga Facultad de Ciencias de la Salud, Carrera de Nutrición y Dietética, Universidad Técnica de Ambato, Ambato - Ecuador Author https://orcid.org/0000-0002-9914-7648
  • Verónica Robayo Facultad de Ciencias de la Salud, Carrera de Nutrición y Dietética, Universidad Técnica de Ambato, Ambato - Ecuador Author https://orcid.org/0000-0003-2366-8698
  • Kattyta Hidalgo Facultad de Ciencias de la Salud, Carrera de Nutrición y Dietética, Universidad Técnica de Ambato, Ambato - Ecuador Author https://orcid.org/0000-0002-0589-9700
  • Deysi Guevara Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato Author https://orcid.org/0000-0003-0211-9681

DOI:

https://doi.org/10.56294/dm2025204

Keywords:

Nutritional Risk, ROC, Specificity, Sensitivity, Celiac disease

Abstract

A questionnaire can be a rapid tool to identify nutritional risk, allowing early intervention, especially in people with diseases such as celiac disease, where poor absorption of nutrients can cause severe deficiencies. This study assessed nutritional risk in 35 patients with prior informed consent, using a validated questionnaire, and analyzing its sensitivity and specificity. The study revealed that 65.7% are malnourished, with 48.6% underweight, especially children (72.7%) and adults (54.5%). In addition, 5.7% of patients, especially young people, are obese (16.7%). The application of the “Nutritional Screening Initiative” questionnaire showed that 66.7% are at nutritional risk, requiring improved eating habits. The correlation analysis indicated a significant association between BMI and nutritional risk. The ROC curve indicated a low discriminatory capacity, although the sensitivity was high (91.7%), correctly identifying cases at nutritional risk. However, at other thresholds, decision-making is almost random, as indicated by the sensitivity and specificity. It is concluded that the ROC curve suggested limitations in the capacity to discriminate nutritional risk, with a high sensitivity but moderate specificity. It is crucial to implement personalized nutritional interventions and improve classification models to more accurately identify risk in this population.

References

1. BMC Medical Education. (2023). "Evaluation of the quality of multiple-choice questions according to the students’ academic level." Retrieved from https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-023-03648-1

2. Marshall, S., Young, A., et al. (2021). Nutritional Screening in Healthcare Settings: Current Practices and Future Directions. Clinical Nutrition.

3. Skipper, A., Ferguson, M., et al. (2020). Nutritional Risk Screening Tools in Clinical Practice. Journal of Parenteral and Enteral Nutrition.4. Fasano, A., & Catassi, C. (2020). Celiac Disease: Insights Into Diagnosis and Treatment. Journal of Gastroenterology.

5. Sapone, A., Bai, J.C., et al. (2021). Gluten-Related Disorders: Celiac Disease, Wheat Allergy, and Non-Celiac Gluten Sensitivity. Nature Reviews Gastroenterology & Hepatology

6. Lara-Pulido, A., Suárez, C. et al. (2022). Prevention of Nutritional Deficiencies. Public Health Nutrition Review.

7. Dwyer JT Screeninig older american´s nutritional health: current practicesand future possibilities. Washington: Nutrition Screening Initiative, 1991.

8. Posner BM, Jette Am, Smith KW, Miller DR. Nutrition and health risks in theelderly: the nutrition screening initiative. Am J Public Health 1993 jul;83(7):972-8.

9. Vickery CE, Camasso AE, Cotugna N. Nutrition screening practices in adultday care centers: a national survey. J Nutr Elder 1993;12(4):43-53.

10. Vergeles-Blanca J.M., Arroyo-Fernández de Aguilar J., Buitrago F.Valoración de la malnutrición en el anciano. FMC-Aten. Primaria 1998Ene;1(5):27-36

11. World Health Organization (WHO). "Obesity and Overweight." Public Health Report, 2023.

12. Mariani, P., et al. (2020). "Celiac disease and malnutrition: risk factors and nutritional management." Journal of Nutritional Medicine, 19(3), 155-161.

13. Meyer, D., & Evans, S. (2021). "Obesity trends in adolescents with celiac disease: impact of dietary changes." Nutrition in Clinical Practice, 36(4), 750-756.

14. Haines, M., et al. (2022). "The paradox of obesity in patients with chronic conditions: focus on celiac disease." Journal of Clinical Gastroenterology, 56(7), 621-626.

15. Thomson, C. A., et al. (2021). "Nutritional risk in patients with celiac disease: insights from screening tools." European Journal of Clinical Nutrition, 75(9), 1222-1230.

16. López, A. G., et al. (2019). "Anthropometric measures and nutritional risk in celiac disease patients: a clinical evaluation." Nutrition Reviews, 77(6), 456-464.

17. Zhang, Y., & Wang, J. (2020). "Assessing model performance in ROC curves: a guide for clinical researchers." Statistics in Medicine, 39(9), 1234-1240.

18. Schmidt, F. L. (2020). "Using the Youden index for optimal threshold selection in clinical models." Clinical Biostatistics, 28(4), 402-409

Downloads

Published

2025-02-10

Issue

Section

Original

How to Cite

1.
Viteri C, Arteaga C, Robayo V, Hidalgo K, Guevara D. Discriminative ability of a nutritional risk questionnaire applied to patients with celiac disease. Data and Metadata [Internet]. 2025 Feb. 10 [cited 2025 Mar. 20];4:204. Available from: https://dm.ageditor.ar/index.php/dm/article/view/204