Analysis of research trends on the implementation of information systems in the agricultural sector

Authors

DOI:

https://doi.org/10.56294/dm2024442

Keywords:

Bibliometric Analysis, Descriptive Study, Agricultural Sector, Computer Systems

Abstract

The process of introducing computer systems in the agricultural sector, also known as Agriculture 4.0, seeks to optimize agricultural production and management at different stages of the agricultural production system. The purpose of the study was to explore research trends on the implementation of computer systems in the agricultural sector. The research approach was quantitative, with a descriptive scope and based on bibliometric procedures. The research was conducted in the SCOPUS database in the period between 1994 and 2023. A total of 73 investigations were obtained. The behavior of the research was heterogeneous, but a stable trend towards the growth of the field could be identified. Regarding the structure of knowledge, research in the area of biological sciences and agriculture predominated with 25 articles. The most productive country is India and the affiliation of the same country was Kumaun University India and the Czech University of Life Sciences Prague, both with four investigations (n=4). The most cited journal with 110 citations was Ecological Informatics, a journal that has an impact factor of 0,92. Four main lines of research were identified from the keyword co-occurrence analysis

References

1. Dutta A, Banerjee M, Ray R. Land capability assessment of Sali watershed for agricultural suitability using a multi-criteria-based decision-making approach. Environmental Monitoring and Assessment. 2024;196(3):237. https://doi.org/10.1007/s10661-024-12393-9

2. Ong RJ, Sudin S, Raof RAA, Choong KY, Al-Hadi AA, Yacob Y, et al. Dynamic web-based knowledge management system (KMS) in small scale agriculture. Mohali, India; 2024. p. 030013. https://doi.org/10.1063/5.0196279

3. Patanduk R, Budianta W, De Fatima IMD, Umar D. Application of DRASTIC method to identify the groundwater vulnerability to pollution in the sub-district of West Limboto and Limboto, Gorontalo Regency, Indonesia. E3S Web of Conferences. 2024;479:02003. https://doi.org/10.1051/e3sconf/202447902003

4. Trushkina N, Dzwigol H. A mechanism for managing the agro-clusters’ development: The European practice and opportunities for Ukraine. London, UK; 2024. p. 020017. https://doi.org/10.1063/5.0188468

5. Bui HT, Aboutorab H, Mahboubi A, Gao Y, Sultan NH, Chauhan A, et al. Agriculture 4.0 and beyond: Evaluating cyber threat intelligence sources and techniques in smart farming ecosystems. Computers & Security. 2024;140:103754. https://doi.org/10.1016/j.cose.2024.103754

6. Hazmy AI, Hawbani A, Wang X, Al-Dubai A, Ghannami A, Yahya AA, et al. Potential of Satellite-Airborne Sensing Technologies for Agriculture 4.0 and Climate-Resilient: A Review. IEEE Sensors Journal. 2024;24(4):4161–80. https://doi.org/10.1109/JSEN.2023.3343428

7. Hoyos Chavarro YA, Melo Zamudio JC, Sánchez Castillo V. Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica. 2022;1(1):20228. https://doi.org/10.58763/rc20228

8. Monteleone S, Alves De Moraes E, Protil RM, Faria BTD, Maia RF. Proposal of a Model of Irrigation Operations Management for Exploring the Factors That Can Affect the Adoption of Precision Agriculture in the Context of Agriculture 4.0. Agriculture. 2024;14(1):134. https://doi.org/10.3390/agriculture14010134

9. Da Silveira F, Barbedo JGA, Da Silva SLC, Amaral FG. Proposal for a framework to manage the barriers that hinder the development of agriculture 4.0 in the agricultural production chain. Computers and Electronics in Agriculture. 2023;214:108281. https://doi.org/10.1016/j.compag.2023.108281

10. Munyavhi A, Shumbanhete B, Mapfumo T, Marodza L. Blockchain Technology, Sustainability and Future of Public Input Distribution in Zimbabwe. Sustainable Agricultural Marketing and Agribusiness Development. GB: CABI; 2023. p. 115–23. https://doi.org/10.1079/9781800622548.0012

11. Lorencowicz E, Uziak J. Selected Problems on Data Used in Precision Agriculture. Farm Machinery and Processes Management in Sustainable Agriculture. Cham: Springer International Publishing; 2023. p. 217–26. (Lecture Notes in Civil Engineering; vol. 289). https://doi.org/10.1007/978-3-03113090-8_23

12. Solodovnik AI, Savkin VI, Gulyaeva TI. Agro-Digital Ecosystems in Agriculture 4.0 and FoodTech Initiatives: Perspectives from Russia. Unlocking Digital Transformation of Agricultural Enterprises. Cham: Springer International Publishing; 2023. p. 17–23. (Innovation, Technology, and Knowledge Management). . https://doi.org/10.1007/9783-031-13913-0_3

13. Szalavetz A. Agricultural Technology Start-ups–Romania and Hungary Compared. Romanian Journal of European Affairs. 2023;23(1):34–45. https://www.scopus.com/inward/record.uri?eid=2-s2.085165485074&partnerID=40&md5=0d1b0e49bbc9d48685113d86ae57addd

14. El Moutaouakil K, Falih N. Deep learning-based classification of cattle behavior using accelerometer sensors. IAES International Journal of Artificial Intelligence (IJ-AI). 2024;13(1):524. https://doi.org/10.11591/ijai.v13.i1.pp524-532

15. Kazama EH, Tedesco D, Carreira VDS, Barbosa Júnior MR, De Oliveira MF, Ferreira FM, et al. Monitoring coffee fruit maturity using an enhanced convolutional neural network under different image acquisition settings. Scientia Horticulturae. 2024;328:112957. https://doi.org/10.1016/j.scienta.2024.112957

16. Juwono FH, Wong WK, Verma S, Shekhawat N, Lease BA, Apriono C. Machine learning for weed–plant discrimination in agriculture 5.0: An in-depth review. Artificial Intelligence in Agriculture. 2023;10:13–25. https://doi.org/10.1016/j.aiia.2023.09.002

17. Zafra-Aycardi MA, Rico-Bautista D, Mejía-Bugallo DA, Sequeda-Serrano JA. The Internet of Things as a Technological Tool and Its Application in the Management and Control of Data for Agriculture 4.0. SN Computer Science. 2023;5(1):56. https://doi.org/10.1007/s42979-023-02428-2

18. Jouini O, Sethom K. A Blockchain Based Authentication Mechanism for IoT in Agriculture 4.0. Advanced Information Networking and Applications. Cham: Springer International Publishing; 2023. p. 67–76. (Lecture Notes in Networks and Systems; vol. 654). https://doi.org/10.1007/978-3-031-28451-9_6

19. López González YY. Aptitud digital del profesorado frente a las competencias TIC en el siglo XXI: una evaluación de su desarrollo. Región Científica. 2023;2(2):2023119. https://doi.org/10.58763/rc2023119

20. Miranda Larroza MM, Sanabria Zotelo ME. Estrategias didácticas en plataformas educativas: experiencia de docentes de Licenciatura en Administración en universidad pública de Paraguay. Región Científica. 2023;2(1):202330. https://doi.org/10.58763/rc202330

21. Ali B, Ilieva A, Zakeri A, Iliev O. From Industry 4.0 Toward Agriculture 4.0. Intelligent Systems and Applications [Internet]. Cham: Springer Nature Switzerland; 2024. p. 636–51. (Lecture Notes in Networks and Systems; vol. 824). https://doi.org/10.1007/978-3-03147715-7_43

22. Debortoli DO, Brignole NB. Inteligencia empresarial para estimular el giro comercial en el microcentro de una ciudad de tamaño intermedio. Región Científica. 2024;3(1):2024195. https://doi.org/1058763/rc2024195

23. Lin M, Chen C, Lu J. Intelligent classifier for various degrees of coffee roasts using smart multispectral vision system. Journal of Field Robotics. 2024;41(3):639–53. https://doi.org/10.1002/rob.22285

24. Eddamiri S, Bassine FZ, Ongoma V, Epule Epule T, Chehbouni A. An automatic ensemble machine learning for wheat yield prediction in Africa. Multimedia Tools and Applications. 2024;83(25):66433–59. https://doi.org/10.1007/s11042-024-18142-x

25. Ghosh B, Roy S, Ahmed N, De D. Dew Aeroponics: Dew-Enabled Smart Aeroponics System in Agriculture 4.0. Dew Computing [Internet]. Singapore: Springer Nature Singapore; 2024. p. 261–87. (Internet of Things). https://doi.org/10.1007/978-981-99-4590-0_13

26. Kouriati A, Moulogianni C, Kountios G, Bournaris T, Dimitriadou E, Papadavid G. Evaluation of Critical Success Factors for Enterprise Resource Planning Implementation Using Quantitative Methods in Agricultural Processing Companies. Sustainability. 2022;14(11):6606. https://doi.org/10.3390/su14116606

27. Guatemala Mariano A, Martínez Prats G. Capacidades tecnológicas en empresas sociales emergentes: una ruta de impacto social. Región Científica. 2023;2(2):2023111. https://doi.org/10.58763/rc2023111

28. Jiang F. A Study on Intelligent Agricultural Monitoring System Based on Internet of Things. Proceedings of Asia Pacific Computer Systems Conference 2021 [Internet]. Singapore: Springer Nature Singapore; 2023. p. 23–31. (Lecture Notes in Electrical Engineering; vol. 978). https://doi.org/10.1007/978-98119-7904-0_3

29. Wang X, Yu S, Wen Z, Zhang L, Fang C, Jiang L. Application of Modern GIS and Remote Sensing Technology Based on Big Data Analysis in Intelligent Agriculture. Journal of the Indian Society of Remote Sensing. 2023;51(9):1891–901. https://doi.org/10.1007/s12524-022-01512-z

30. García Peña M, López Ocmin LS, Romero-Carazas R. Control interno de inventario y la gestión de resultados de un emporio comercial de la región de San Martín - Perú. Región Científica. 2023;2(2):202392. https://doi.org/10.58763/rc202392

31. Sanabria Martínez MJ. Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica. 2022;1(1):20222. https://doi.org/10.58763/rc20222

32. Aguiar S, Barros E. A Soil pH Sensor and a Based on Time-Series Prediction IoT System for Agriculture. 2023 XIII Brazilian Symposium on Computing Systems Engineering (SBESC) [Internet]. Porto Alegre, Brazil: IEEE; 2023. p. 1–6. https://doi.org/10.1109/SBESC60926.2023.10324263

33. Higuera Carrillo EL. Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica. 2022;1(1):20224. https://doi.org/10.58763/rc20224

34. Kar GN, Verma P, Mahato S, Santra A, Kundu S, Bose A. An IoT-Enabled Multi-Sensor System with Location Detection for Agricultural Applications. MAPAN - Journal of Metrology Society of India. 2023;38(2):375–82. https://doi.org/10.1007/s12647-022-00617-7

35. Shaik KS, Thumboor NSK, Veluru SP, Bommagani NJ, Sudarsa D, Muppagowni GK. Enhanced SVM Model with Orthogonal Learning Chaotic Grey Wolf Optimization for Cybersecurity Intrusion Detection in Agriculture 4.0. International Journal of Safety and Security Engineering. 2023;13(3):509–17. https://doi.org/10.18280/ijsse.130313

36. Da Silveira F, Lermen FH, Amaral FG. An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture. 2021;189:106405. https://doi.org/10.1016/j.compag.2021.106405

37. Debauche O, Mahmoudi S, Manneback P, Lebeau F. Cloud and distributed architectures for data management in agriculture 4.0 : Review and future trends. Journal of King Saud University - Computer and Information Sciences. 2022;34(9):7494–514. https://doi.org/10.1016/j.jksuci.2021.09.015

38. Kiran Pandiri DN, Murugan R, Goel T. Smart soil image classification system using lightweight convolutional neural network. Expert Systems with Applications. 2024;238:122185. https://doi.org/10.1016/j.eswa.2023.122185

39. Kitole FA, Mkuna E, Sesabo JK. Digitalization and agricultural transformation in developing countries: Empirical evidence from Tanzania agriculture sector. Smart Agricultural Technology. 2024;7:100379. https://doi.org/10.1016/j.atech.2023.100379

40. Mahato M, Bharambe U, Govilkar S, Dhavale C, Moharkar L. Leveraging Big Data Analytics and Conversational AI for Agriculture. Big Data Computing [Internet]. Boca Raton: CRC Press; 2023. p. 180–95. https://doi.org/10.1201/9781032634050-9

41. Raza MMS, Li S, Issa SF. Global Patterns of Agricultural Machine and Equipment Injuries- A Systematic Literature Review. Journal of Agromedicine. 2024;29(2):214–34. https://doi.org/10.1080/1059924X.2024.2304704

42. Wakchaure M, Patle BK, Mahindrakar AK. Application of AI techniques and robotics in agriculture: A review. Artificial Intelligence in the Life Sciences. 2023;3:100057. https://doi.org/10.1016/j.ailsci.2023.100057

43. Kaushalya TVH, Wijewardana BYS, Karunasena A, Kavishika MGG, Gamage STA, Weerasinghe L. CEYLAGRO: Information Technological Approach for an Optimized and Centralized Agriculiture Platform. 2020 2nd International Conference on Advancements in Computing (ICAC) [Internet]. Malabe, Sri Lanka: IEEE; 2020. p. 198–203. https://doi.org/10.1109/ICAC51239.2020.9357313

44. Bulut C, Wu PF. More than two decades of research on IoT in agriculture: a systematic literature review. Internet Research. el 21 de mayo de 2024;34(3):994–1016.

45. Kruger S, Steyn AA. Adopting Smart Technologies of Industry 4.0 to Formulate Data for Enhanced Business Intelligence. Digital-for-Development: Enabling Transformation, Inclusion and Sustainability Through ICTs [Internet]. Cham: Springer Nature Switzerland; 2023. p. 154–71. (Communications in Computer and Information Science; vol. 1774). https://doi.org/10.1007/978-3-031-28472-4_10

46. Jorge-Vázquez J, Chivite-Cebolla MP, Salinas-Ramos F. The Digitalization of the European Agri-Food Cooperative Sector. Determining Factors to Embrace Information and Communication Technologies. Agriculture. 2021;11(6):514. https://doi.org/10.3390/agriculture11060514

47. Ledesma F, Malave González BE. Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica. 2022;1(1):202214. https://doi.org/10.58763/rc202214

48. Linnenluecke MK, Marrone M, Singh AK. Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management. 2020;45(2):175–94. https://doi.org/10.1177/0312896219877678

49. Sánchez Suárez Y, Marqués León M, Hernández Nariño A, Suárez Pérez MM. Metodología para el diagnóstico de la gestión de trayectorias de pacientes en hospitales. Región Científica. 2023;2(2):2023115. https://doi.org/10.58763/rc2023115

50. Castañeda Ramos R, Arias Diaz D, Santos Maldonado AB. Control de bienes patrimoniales y su relación en el saneamiento físico e información contable en las municipalidades de Lima. Región Científica. 2023;2(1):202341. https://doi.org/10.58763/rc202341

51. Sánchez-Castillo V, Pérez-Gamboa AJ, Gómez-Cano CA. Trends and evolution of Scientometric and Bibliometric research in the SCOPUS database. Bibliotecas, Anales de Investigacion [Internet]. 2024;20(1). http://revistas.bnjm.sld.cu/index.php/BAI/article/view/834

52. Armenta-Medina D, Ramirez-delReal TA, Villanueva-Vásquez D, Mejia-Aguirre C. Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy. 2020;10(12):1989. https://doi.org/10.3390/agronomy10121989

53. Ribeiro MIB, Fernandes AJG, Lopes IM, Fernandes APR. A Bibliometric Analysis About the Use of ICT in the Agricultural Sector. Guarda T, Portela F, Santos MF, editores. Advanced Research in Technologies, Information, Innovation and Sustainability [Internet]. Springer International Publishing; 2021. p. 589–99. (Communications in Computer and Information Science; vol. 1485). https://doi.org/10.1007/978-3-030-90241-4_45

54. Mühl DD, De Oliveira L. A bibliometric and thematic approach to agriculture 4.0. Heliyon. mayo de 2022;8(5):e09369. https://doi.org/10.1016/j.heliyon.2022.e09369

Downloads

Published

2024-06-29

Issue

Section

Original

How to Cite

1.
Sánchez-Castillo V, Ávila Romero R, Juárez Olascoaga BG. Analysis of research trends on the implementation of information systems in the agricultural sector. Data and Metadata [Internet]. 2024 Jun. 29 [cited 2024 Dec. 21];3:442. Available from: https://dm.ageditor.ar/index.php/dm/article/view/258