Integration of electromagnetic and mechanical models for effective lightning protection in buildings
DOI:
https://doi.org/10.56294/dm2024400Keywords:
Programming, Testing, Structure, AlgorithmAbstract
The study focused on the design of an advanced algorithm for the optimal sizing of protection systems against atmospheric discharges in architectural structures, applying the rolling sphere method. This technique facilitated the incorporation of user-specified parameters through an advanced graphical interface. The methodology began with the exhaustive accumulation of data relevant to the project. Risk indices were estimated through sophisticated risk analysis software applications. If adjustments were required, the process continued; If not, the building was considered to be adequately secured. The ground resistivity was evaluated according to IEEE Std. 81, and the rolling sphere method was implemented according to IEC 662305-3. The grounding systems were configured in accordance with IEEE Std. 142 and IEEE Std. 80. To analyze the interaction of electrical discharges with the protected building, the electrical equivalents of elements such as meshes, fused copper rods were computed. , and conductors positioned horizontally and vertically. Using these data, a model was built in ATPDraw, interconnected with Python for the generation of graphical representations of the current waves in the different protection subsystems. To conclude and corroborate the effectiveness of the process, the risk indices were reevaluated. The validation of the algorithm was achieved by minimizing the margin of error to insignificant levels by incorporating standardized data proposed by organizations such as IEC and IEEE, thus confirming the precision of the designed algorithm
References
1. Cuellar Calderón AA, Marroquín Villalta AE, Segovia Salazar MA. Diseño de Sistema de Protección contra descargas atmosféricas en Planta Generadora Térmica, Acajutla 2018.
2. Quintanilla Portillo E de J, Rivera Orellana DF, Rosa Siciliano GI. Protección al aimpacto directo de rayos en subestaciones de potencia usando la norma IEEE Std 998-2012. Universidad de el Salvador 2020.
3. Pérez Gamboa AJ, Díaz-Guerra DD. Artificial Intelligence for the development of qualitative studies. LatIA. 2023;1:4.
4. Paguay A, Vilca B. Sistema de Apantallamiento y Puesta a Tierra para edificaciones residenciales, comerciales e Industriales. Ciencias de la Ingeniería y Aplicadas 2023;7:45-57.
5. Silva SE. Método de superficies Ionizantes: nuevo enfoque para la protección contra descargas atmosféricas. Ingeniería Energética 2009;30:13-9.
6. Sanchez Murillo JA. Evaluación del Sistema Integral de Protección contra Rayos y sobretensiones (SIPRA) de los edificios B y C de las Unidades Tecnológicas de Santander (UTS) de la ciudad de Bucaramanga, bajo los lineamientos de las Normas Técnicas Colombianas. 2021.
7. Paguay Llamuca AI. Desarrollo de un algoritmo para el dimensionamiento de protección contra descargas atmosféricas en edificaciones basado en el método de la esfera rodante. 2023.
8. Orbea Garcia JM, Salazar Achig ER, Quinatoa Caiza CI. Análisis del sistema de protección de puesta a tierra y apantallamiento eléctrico en una planta minera: Analysis of the protection system for grounding and electrical shielding in a mining plant. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades 2023;4:3321-39.
9. Gómez Cano CA, Colala Troya AL. Artificial Intelligence applied to teaching and learning processes. LatIA. 2023;1:2.
10. Chiliquinga Taipe JG, Guanoluisa LE. Evaluación del sistema de puesta a tierra de la línea de subtransmisión Ambato-Samanga y Samaga-Pillaro a 69 KV perteneciente a la Empresa Eléctrica Ambato para proponer alternativas que permitan mejorar el sistema. 2017.
11. Monga DP, Changoluisa CJ, Salazar ER, Jiménez DL, Proaño XA. Determinación de los parámetros de un sistema de puesta a tierra y apantallamiento eléctrico planteando un caso de expansión en una central de generación distribuida. Revista Técnica energía 2022;19:34-41.
12. Alyami S. Grid grounding calculations for a 132-kv Substation using soil backfilling. IEEE Access 2019;7:104933-40.
13. Resistivity E. An American National Standard IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 2023.
14. Sánchez Castillo V. Analysis of the scientific production on the implementation of artificial intelligence in precision agriculture. LatIA. 2023;1:1.
15. Sazali MS, Wooi CL, Arshad SNM, Wong TS, Abdul-Malek Z, Nabipour-Afrouzi H. Study of soil resistivity using wenner four pin method: Case study. 2020 IEEE International Conference on Power and Energy (PECon), IEEE; 2020, p. 386-91.
16. Portilla Socon JA. Estudio de un sistema de protección atmosférica según normas IEC 62305 para una nave industrial en el Departamento de Junín 2021.
Published
Issue
Section
License
Copyright (c) 2024 Carlos Ivan Quinatoa Caiza , Alex Ivan Paguay Llamuca , Xavier Alfonso Proaño Maldonado (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.