Challenges and opportunities in traffic flow prediction:  review of machine learning and deep learning perspectives

Authors

DOI:

https://doi.org/10.56294/dm2024378

Keywords:

Smart Cities, Intelligent Transportation Systems, Machine Learning (ML), Deep Learning (DL), Long Short-Term Memory (LSTM)

Abstract

In recent days, traffic prediction has been essential for modern transportation networks. Smart cities rely on traffic management and prediction systems. This study utilizes state-of-the-art deep learning and machine learning techniques to adjust to changing traffic conditions. Modern DL models, such as LSTM and GRU, are examined here to see whether they may enhance prediction accuracy and provide valuable insights. Repairing problems and errors connected to weather requires hybrid models that integrate deep learning with machine learning. These models need top-notch training data to be precise, flexible, and able to generalize. Researchers are continuously exploring new approaches, such as hybrid models, deep learning, and machine learning, to discover traffic flow data patterns that span several places and time periods. Our current traffic flow estimates need improvement. Some expected benefits are fewer pollutants, higher-quality air, and more straightforward urban transportation. With machine learning and deep learning, this study aims to improve traffic management in urban areas. Long Short-Term Memory (LSTM) models may reliably forecast traffic patterns

References

1. A. A. Kashyap, S. Raviraj, A. Devarakonda, S. R. Nayak K, S. K. V. and S. J. Bhat. Traffic flow prediction models – A review of deep learning techniques, Cogent Eng, vol. 9, no. 1, pp. 1–19. doi:10.1080/23311916.2021.2010510.

2. B. Medina-Salgado, E. Sánchez-DelaCruz, P. Pozos-Parra and J. E. Sierra. Urban traffic flow prediction techniques: A review, Sustainable Computing: Informatics and Systems, vol. 35, p. 100739, pp. 1–10. doi: 10.1016/j.suscom.2022.100739.

3. Y. Yu, W. Sun, J. Liu and C. Zhang. Traffic flow prediction based on depthwise separable convolution fusion network, J Big Data, vol. 9, no. 1, pp. 83, pp. 1–15. doi: 10.1186/s40537-022-00637-9.

4. M. Shaygan, C. Meese, W. Li, X. (George) Zhao and M. Nejad. Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities, Transp Res Part C Emerg Technol, vol. 145, p. 103921, pp. 1–21. doi: 10.1016/j.trc.2022.103921.

5. N. A. M. Razali, N. Shamsaimon, K. K. Ishak, S. Ramli, M. F. M. Amran and S. Sukardi. Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning, J Big Data, vol. 8, no. 1, pp. 1–22. doi: 10.1186/s40537-021-00542-7.

6. A. Navarro-Espinoza et al. Citation: Prediction for Smart Traffic Lights Using Machine Learning Algorithms. Traffic Flow Prediction for Smart Traffic Lights Using Machine Learning Algorithms, pp. 1–10. doi: 10.3390/technologies.

7. F. Wang, J. Xu, C. Liu, R. Zhou and P. Zhao. On prediction of traffic flows in smart cities: a multitask deep learning based approach, World Wide Web, vol. 24, no. 3, pp. 805–823. doi: 10.1007/s11280-021-00877-4.

8. S. E. Bibri and J. Krogstie. Smart sustainable cities of the future: An extensive interdisciplinary literature review, Sustain Cities Soc, vol. 31, pp. 183–212. doi: 10.1016/j.scs.2017.02.016.

9. S. A. Sayed, Y. Abdel-Hamid and H. A. Hefny. Artificial intelligence-based traffic flow prediction: a comprehensive review, Journal of Electrical Systems and Information Technology, vol. 10, no. 1, pp. 1–24. doi: 10.1186/s43067-023-00081-6.

10. R. Lakhani, D. Dalal, V. Dantwala and K. Bhowmick. Traffic Congestion Prediction Using Deep Learning Models, pp. 779–788. doi: 10.1007/978-981-19-9638-2_67.

11. D. Chen, H. Wang and M. Zhong. A Short-term Traffic Flow Prediction Model Based on AutoEncoder and GRU, in 2020 12th International Conference on Advanced Computational Intelligence (ICACI), IEEE, Aug. 2020, pp. 550–557. doi: 10.1109/ICACI49185.2020.9177506.

12. Nipun Waas. Time Series Forecasting: Predicting mobile traffic with LSTM, Medium.com.

13. Shanthababu Pandian. Time Series Analysis and Forecasting | Data-Driven Insights (Updated 2024), Analyticsvidhya.com.

14. V. Swathi, S. Yerraboina, G. Mallikarjun and M. JhansiRani. Traffic Prediction for Intelligent Transportation System Using Machine Learning, in 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), IEEE, Apr. 2022, pp. 1–4. doi: 10.1109/ICAECT54875.2022.9807652.

15. N. Shamsaimon et al. Traffic Flow Prediction Using Long-Short Term Memory Technique for Connected Vehicles in Smart Cities, pp. 411–422. doi: 10.1007/978-3-030-90235-3_36.

16. W. Wei, H. Wu and H. Ma. An AutoEncoder and LSTM-Based Traffic Flow Prediction Method, Sensors, vol. 19, no. 13, pp. 2946. doi: 10.3390/s19132946.

17. E. P. Lens Shiang, W.-C. Chien, C.-F. Lai and H.-C. Chao. Gated Recurrent Unit Network-based Cellular Trafile Prediction, in 2020 International Conference on Information Networking (ICOIN), IEEE, Jan. 2020, pp. 471–476. doi: 10.1109/ICOIN48656.2020.9016439.

18. K. O. Ellefsen, C. P. Martin and J. Torresen. How do Mixture Density RNNs Predict the Future?, Jan. 2019, [Online]. Available: http://arxiv.org/abs/1901.07859

19. M. Chen, R. Chen, F. Cai, W. Li, N. Guo and G. Li. Short-Term Traffic Flow Prediction with Recurrent Mixture Density Network, Math Probl Eng, vol. 2021, pp. 1–9. doi: 10.1155/2021/6393951.

20. Google. Google Scholar Search System, https://scholar.google.com/.

21. L. Li, R. Jiang, Z. He, X. (Michael) Chen and X. Zhou. Trajectory data-based traffic flow studies: A revisit, Transportation Research Part C: Emerging Technologies, vol. 114, pp. 225–240. doi: 10.1016/j.trc.2020.02.016.

22. U.S Dept of Tranportation. Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data, Data.gov.

23. L. Li, R. Jiang, Z. He, X. (Michael) Chen and X. Zhou. Trajectory data-based traffic flow studies: A revisit, Transp Res Part C Emerg Technol, vol. 114, pp. 225–240. doi: 10.1016/j.trc.2020.02.016.

24. U.S Dept of Transportation. Next Generation Simulation (NGSIM) Open Data, Tranportation.gov.

25. M. Fellendorf and P. Vortisch. Microscopic Traffic Flow Simulator VISSIM, pp. 63–93. doi: 10.1007/978-1-4419-6142-6_2.

26. U. Sah. Traffic flow -Study and Modelling Levels., ResearchGate, 2019.

27. R. Mohan and G. Ramadurai. State-of-the art of macroscopic traffic flow modelling, Int J Adv Eng Sci Appl Math, vol. 5, no. 2–3, pp. 158–176. doi: 10.1007/s12572-013-0087-1.

28. J. Zhang, X. Wang, J. Wang and J. Wang. Decision-Making Model of Lane-Change Behavior Based on Integrated Cognitive Vehicle Cluster Situations, pp. 77–94. doi: 10.1007/978-981-10-3551-7_6.

29. W. Zhang, S. Wei, C. Wang and M. Qiu. Asymmetric Behaviour and Traffic Flow Characteristics of Expressway Merging Area in China, Promet, vol. 35, no. 1, pp. 12–26. doi: 10.7307/ptt.v35i1.4200.

30. H. Deng and H. M. Zhang. On Traffic Relaxation, Anticipation, and Hysteresis, Transportation Research Record: Journal of the Transportation Research Board, vol. 2491, no. 1, pp. 90–97. doi: 10.3141/2491-10.

31. D. Li, L. Deng, Z. Cai, B. Franks and X. Yao. Notice of Retraction: Intelligent Transportation System in Macao Based on Deep Self-Coding Learning, IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3253–3260, Jul. 01, 2018. doi: 10.1109/TII.2018.2810291.

32. O. Messoussi et al. Vehicle Detection and Tracking from Surveillance Cameras in Urban Scenes, pp. 191–202. doi: 10.1007/978-3-030-90436-4_15.

33. A. Ghosh, Md. S. Sabuj, H. H. Sonet, S. Shatabda and D. Md. Farid. An Adaptive Video-based Vehicle Detection, Classification, Counting, and Speed-measurement System for Real-time Traffic Data Collection, in 2019 IEEE Region 10 Symposium (TENSYMP), IEEE, Jun. 2019, pp. 541–546. doi: 10.1109/TENSYMP46218.2019.8971196.

34. A. Gholamhosseinian and J. Seitz. Vehicle Classification in Intelligent Transport Systems: An Overview, Methods and Software Perspective, IEEE Open Journal of Intelligent Transportation Systems, vol. 2, pp. 173–194, 2021. doi: 10.1109/OJITS.2021.3096756.

35. V. S. R. Kosuru, A. K. Venkitaraman, V. D. Chaudhari, N. Garg, A. Rao and A. Deepak. Automatic Identification of Vehicles in Traffic using Smart Cameras, in 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), IEEE, Dec. 2022, pp. 1009–1014. doi: 10.1109/IC3I56241.2022.10072979.

36. C. An, X. Guo, R. Hong, Z. Lu and J. Xia. Lane-Based Traffic Arrival Pattern Estimation Using License Plate Recognition Data, IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 4, pp. 133–144, Jul. 2022. doi: 10.1109/MITS.2021.3051489.

37. W. Yao, M. Zhang, S. Jin and D. Ma. Understanding vehicles commuting pattern based on license plate recognition data, Transp Res Part C Emerg Technol, vol. 128, p. 103142, Jul. 2021. doi: 10.1016/j.trc.2021.103142.

38. Z. Xing, M. Huang and D. Peng. Overview of machine learning-based traffic flow prediction, *Digital Transportation and Safety*, vol. 2, no. 3, pp. 164–175, 2023. doi: 10.48130/DTS-2023-0013.

39. Y. Zhang and G. Huang. Traffic flow prediction model based on deep belief network and genetic algorithm, in *IET Intelligent Transport Systems*, Institution of Engineering and Technology, Aug. 2018, pp. 533–541. doi: 10.1049/iet-its.2017.0199.

40. Y. Hou, Z. Deng and H. Cui. Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion, *Complexity*, vol. 2021, 2021. doi: 10.1155/2021/6662959.

41. D. Xu and Y. Shi. A combined model of random forest and multilayer perceptron to forecast expressway traffic flow, in *2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC)*, IEEE, Jul. 2017, pp. 448–451. doi: https://doi.org/10.1109/ICEIEC.2017.0024.

42. H. Jiang and H. Deng. Traffic incident detection method based on factor analysis and weighted random forest, *IEEE Access*, vol. 8, pp. 168394–168404, 2020. doi: 10.1109/ACCESS.2020.3023961.

43. C. Bratsas, K. Koupidis, J.-M. Salanova, K. Giannakopoulos, A. Kaloudis and G. Aifadopoulou. A Comparison of Machine Learning Methods for the Prediction of Traffic Speed in Urban Places, *Sustainability*, vol. 12, no. 1, p. 142, Dec. 2019. doi: 10.3390/su12010142.

44. Q. Zhou, N. Chen and S. Lin. FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features, *Sensors*, vol. 22, no. 18, p. 6921, Sep. 2022. doi: 10.3390/s22186921.

45. S. Goswami and A. Kumar. Traffic Flow Prediction Using Deep Learning Techniques, 2022, pp. 198–213. doi: 10.1007/978-3-031-10551-7_15.

46. N. Reshma Ramchandra and C. Rajabhushanam. Machine learning algorithms performance evaluation in traffic flow prediction, in *Materials Today: Proceedings*, Elsevier Ltd, 2021, pp. 1046–1050. doi: 10.1016/j.matpr.2021.07.087.

47. W. Wei, H. Wu and H. Ma. An autoencoder and LSTM-based traffic flow prediction method, Sensors (Switzerland), vol. 19, no. 13, Jul. 2019. doi: https://doi.org/10.3390/s19132946.

48. X. Chen et al. Traffic flow prediction by an ensemble framework with data denoising and deep learning model, Physica A: Statistical Mechanics and its Applications, vol. 565, Mar. 2021. doi: 10.1016/j.physa.2020.125574.

49. C. Chen, Z. Liu, S. Wan, J. Luan and Q. Pei. Traffic Flow Prediction Based on Deep Learning in Internet of Vehicles, IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3776–3789, Jun. 2021. doi: 10.1109/TITS.2020.3025856.

50. J. Wang and Q. Chen. A traffic prediction model based on multiple factors, Journal of Supercomputing, vol. 77, no. 3, pp. 2928–2960, Mar. 2021. doi: 10.1007/s11227-020-03373-0.

51. C. Li and P. Xu. Application on traffic flow prediction of machine learning in intelligent transportation, Neural Comput Appl, vol. 33, no. 2, pp. 613–624, Jan. 2021. doi: 10.1007/s00521-020-05002-6.

52. N. U. Khan, M. A. Shah, C. Maple, E. Ahmed and N. Asghar. Traffic Flow Prediction: An Intelligent Scheme for Forecasting Traffic Flow Using Air Pollution Data in Smart Cities with Bagging Ensemble, Sustainability (Switzerland), vol. 14, no. 7, Apr. 2022. doi: 10.3390/su14074164.

53. Z. Wang, R. Chu, M. Zhang, X. Wang and S. Luan. An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification, IEEE Access, vol. 8, pp. 212623–212634, 2020. doi: 10.1109/ACCESS.2020.3038801.

54. M. Chen, R. Chen, F. Cai, W. Li, N. Guo and G. Li. Short-Term Traffic Flow Prediction with Recurrent Mixture Density Network, Math Probl Eng, vol. 2021, 2021. doi: 10.1155/2021/6393951.

55. X. Bao, D. Jiang, X. Yang, and H. Wang. An improved deep belief network for traffic prediction considering weather factors, Alexandria Engineering Journal, vol. 60, no. 1, pp. 413–420, Feb. 2021. doi: 10.1016/j.aej.2020.09.003.

56. Y. Chen, Y. Lv, P. Ye, and F. Zhu. Traffic-Condition-Awareness Ensemble Learning for Traffic Flow Prediction, IFAC-PapersOnLine, vol. 53, no. 2, pp. 582–587. doi: 10.1016/j.ifacol.2021.04.146.

57. Caltrans. Caltrans Performance Measurement Systems, Data.gov. Available: https://pems.dot.ca.gov/.

58. S. Mohanty, A. Pozdnukhov, and M. Cassidy. Region-wide congestion prediction and control using deep learning, Transp Res Part C Emerg Technol, vol. 116, Jul. 2020. doi: 10.1016/j.trc.2020.102624.

59. N. Ranjan, S. Bhandari, H. P. Zhao, H. Kim, and P. Khan. City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN, IEEE Access, vol. 8, pp. 81606–81620, 2020. doi: 10.1109/ACCESS.2020.2991462.

60. D. H. Shin, K. Chung, and R. C. Park. Prediction of Traffic Congestion Based on LSTM through Correction of Missing Temporal and Spatial Data, IEEE Access, vol. 8, pp. 150784–150796, 2020. doi: 10.1109/ACCESS.2020.3016469.

61. Z. Zheng, Y. Yang, J. Liu, H. N. Dai, and Y. Zhang. Deep and Embedded Learning Approach for Traffic Flow Prediction in Urban Informatics, IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3927–3939, Oct. 2019. doi: 10.1109/TITS.2019.2909904.

62. J. Wang, R. Chen, and Z. He. Traffic speed prediction for urban transportation network: A path based deep learning approach, Transp Res Part C Emerg Technol, vol. 100, pp. 372–385, Mar. 2019. doi: 10.1016/j.trc.2019.02.002.

63. H.-C. Jang and C.-A. Chen. Urban Traffic Flow Prediction Using LSTM and GRU, in 2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Basel Switzerland: MDPI, Jan. 2024, p. 86. doi: 10.3390/engproc2023055086.

64. M. Yurtsever. Unemployment rate forecasting: LSTM-GRU hybrid approach, J Labour Mark Res, vol. 57, no. 1, p. 18, Jun. 2023. doi: 10.1186/s12651-023-00345-8.

65. Z. Wang and T. Pyle. Implementing a pavement management system: The Caltrans experience, International Journal of Transportation Science and Technology, vol. 8, no. 3, pp. 251–262, Sep. 2019. doi: 10.1016/j.ijtst.2019.02.002.

66. Z. Zhao, J. Yuan, and L. Chen. Air Traffic Flow Management Delay Prediction Based on Feature Extraction and an Optimization Algorithm, Aerospace, vol. 11, no. 2, p. 168, Feb. 2024. doi: 10.3390/aerospace11020168.

67. L. Ma, X. Meng, and Z. Wu. Data-Driven 4D Trajectory Prediction Model Using Attention-TCN-GRU, Aerospace, vol. 11, no. 4, p. 313, Apr. 2024. doi: 10.3390/aerospace11040313.

68. X. Liu, X. Qin, M. Zhou, H. Sun, and S. Han. Community-Based Dandelion Algorithm-Enabled Feature Selection and Broad Learning System for Traffic Flow Prediction, IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 3, pp. 2508–2521, Mar. 2024. doi: 10.1109/TITS.2023.3321384.

69. K. Jiang, C. Wu, and Y. Chen. Revisiting the Efficacy of Signal Decomposition in AI-based Time Series Prediction.

70. X. Guo, W. Li, and J. Qiao. A modular neural network with empirical mode decomposition and multi-view learning for time series prediction, Soft comput, vol. 27, no. 17, pp. 12609–12624, Sep. 2023. doi: 10.1007/s00500-023-08638-3.

71. W.-N. Hsu, Y. Zhang, and J. Glass. A prioritized grid long short-term memory RNN for speech recognition, in 2016 IEEE Spoken Language Technology Workshop (SLT), IEEE, Dec. 2016, pp. 467–473. doi: 10.1109/SLT.2016.7846305.

72. S. Hochreiter and J. Schmidhuber. Long Short-Term Memory, Neural Comput, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735.

73. A. Rehmer and A. Kroll. On Using Gated Recurrent Units for Nonlinear System Identification, in 2019 18th European Control Conference (ECC), IEEE, Jun. 2019, pp. 2504–2509. doi: 10.23919/ECC.2019.8795631.

74. K. Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition, Neural Networks, vol. 1, no. 2, pp. 119–130, Jan. 1988. doi: 10.1016/0893-6080(88)90014-7.

75. J. Heaton. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning, Genet Program Evolvable Mach, vol. 19, no. 1–2, pp. 305–307, Jun. 2018. doi: 10.1007/s10710-017-9314-z.

76. Y. Kominami, H. Ogawa, and K. Murase. Convolutional neural networks with multi-valued neurons, in 2017 International Joint Conference on Neural Networks (IJCNN), IEEE, May 2017, pp. 2673–2678. doi: 10.1109/IJCNN.2017.7966183.

77. S. A. Sayed, Y. Abdel-Hamid, and H. A. Hefny. Artificial intelligence-based traffic flow prediction: a comprehensive review, Journal of Electrical Systems and Information Technology, vol. 10, no. 1, Mar. 2023. doi: 10.1186/s43067-023-00081-6.

78. Y. Zhang. Support Vector Machine Classification Algorithm and Its Application, 2012, pp. 179–186. doi: 10.1007/978-3-642-34041-3_27.

79. Houtao Deng. An Introduction to Random Forest, https://towardsdatascience.com/random-forest-3a55c3aca46d.

80. G. Meena, D. Sharma, and M. Mahrishi. Traffic Prediction for Intelligent Transportation System using Machine Learning, in Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, ICETCE 2020, Institute of Electrical and Electronics Engineers Inc., Feb. 2020, pp. 145–148. doi: 10.1109/ICETCE48199.2020.9091758.

81. A. Mohammed and R. Kora. A comprehensive review on ensemble deep learning: Opportunities and challenges, Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 2, pp. 757–774, Feb. 01, 2023. doi: 10.1016/j.jksuci.2023.01.014.

Downloads

Published

2024-01-01

Issue

Section

Original

How to Cite

1.
Uddin Gilani SA, Al-Rajab M, Bakka M. Challenges and opportunities in traffic flow prediction:  review of machine learning and deep learning perspectives. Data and Metadata [Internet]. 2024 Jan. 1 [cited 2024 Dec. 21];3:378. Available from: https://dm.ageditor.ar/index.php/dm/article/view/280