Securing Biomedical Audio Data in IoT Healthcare Systems: An Evaluation of Encryption Methods for Enhanced Privacy

Authors

  • Mohammed Amraoui Intelligent Processing and Security of System (IPSS Team), Department of Computer Science, Faculty of Sciences, Mohammed V University in Rabat. Morocco Author https://orcid.org/0009-0006-5616-118X
  • Imane Lasri Laboratory of Conception and Systems (Electronics, Signals and Informatics), Faculty of Sciences, Mohammed V University in Rabat. Morocco Author https://orcid.org/0000-0002-1481-094X
  • Fouzia Omary Intelligent Processing and Security of System (IPSS Team), Department of Computer Science, Faculty of Sciences, Mohammed V University in Rabat. Morocco Author https://orcid.org/0000-0001-5216-0119
  • Mohamed Khalifa Boutahir Engineering science and technology laboratory, IDMS Team, Faculty of Sciences and Tech-niques, Moulay Ismail University of Meknes. Morocco Author https://orcid.org/0000-0002-4781-551X

DOI:

https://doi.org/10.56294/dm2024365

Keywords:

Audio security, Chacha20, Salsa20, Camellia, Noise reduction, Fourier transform

Abstract

Communication technology have advanced quickly since the COVID-19 epidemic started, providing consumers with additional benefits and conveniences. Concerns over the privacy and confidentiality of this data have grown in importance as initiatives that promote the use of audio and video to enhance interpersonal interactions become more common. In the context of the Internet of Things (IoT), audio communications security is essential in the biomedical domain. Sensitive medical data may be compromised in these connections, which include exchanges between patients and doctors and broadcasts of vital signs. To protect patient privacy and reduce cybersecurity threats, strong security measures such as data encryption must be put in place. Our study attempts to address these issues in this environment. Comparative examination of the Chacha20, Salsa20, and Camellia encryption algorithms enabled us to ascertain that Chacha20 performs exceptionally well when it comes to audio file decryption and encryption speed. The results of our trials attest to this encryption method's astounding effectiveness and efficacy. We have also used the noise reduction technique, which is frequently used in audio security to enhance the quality of recordings and make it easier to identify significant information in audio signals. Then, Fourier transform technique, which is also used to analyze audio files and can be used to identify changes, extract hidden information, and authenticate audio files. By doing this, the audio files security and integrity are strengthened

References

1. Yazdanpanah S, Chaeikar SS, Jolfaei A. Monitoring the security of audio biomedical signals communications in wearable IoT healthcare. Digital Communications and Networks. 2022; S2352864822002437. doi: 10.1016/j.dcan.2022.11.002.

2. Lin C-H, Hu G-H, Chen J-S, Yan J-J, Tang K-H. Novel design of cryptosystems for video/audio streaming via dynamic synchronized chaos-based random keys. Multimedia Systems. 2022;28(5):1793-1808. doi: 10.1007/s00530-022-00950-6.

3. Chen Y, et al. SoK: A Modularized Approach to Study the Security of Automatic Speech Recognition Systems. arXiv. 2021. doi.org/10.48550/arXiv.2103.10651

4. Mcuba M, Singh A, Ikuesan RA, Venter H. The Effect of Deep Learning Methods on Deepfake Audio Detection for Digital Investigation. Procedia Computer Science. 2023;219:211-219. doi: 10.1016/j.procs.2023.01.283.

5. Lasri I, Riadsolh A, Elbelkacemi M. Facial emotion recognition of deaf and hard-of-hearing students for engagement detection using deep learning. Education and Information Technologies. 2023;28(4):4069-4092. doi.org/10.1007/s10639-022-11370-4

6. Mawalim CO, Titalim BA, Okada S, Unoki M. Non-intrusive speech intelligibility prediction using an auditory periphery model with hearing loss. Applied Acoustics. 2023;214:109663. doi: 10.1016/j.apacoust.2023.109663.

7. Hazzaa F, Shabut AM, Ali NHM, Cirstea M. Security Scheme Enhancement for Voice over Wireless Networks. Journal of Information Security and Applications. 2021;58:102798. doi: 10.1016/j.jisa.2021.102798.

8. Castillo VS. Analysis of the scientific production on the implementation of artificial intelligence in precision agriculture. LatIA 2023;1:1-1. https://doi.org/10.62486/latia20231.

9. Alsabhany AA, Ridzuan F, Azni AH. The Progressive Multilevel Embedding Method for Audio Steganography. J. Phys.: Conf. Ser. 2020;1551(1):012011. doi: 10.1088/1742-6596/1551/1/012011.

10. Shelke R, Nemade M. Audio Encryption Algorithm Using Modified Elliptical Curve Cryptography and Arnold Transform for Audio Watermarking. In: 2018 3rd International Conference for Convergence in Technology (I2CT). IEEE; 2018. p. 1-4. doi: 10.1109/I2CT.2018.8529329.

11. Gu Z, Liu Y. Scalable Group Audio-Based Authentication Scheme for IoT Devices. In: 2016 12th International Conference on Computational Intelligence and Security (CIS). IEEE; 2016. p. 277-281. doi: 10.1109/CIS.2016.0070.

12. Singh DHP, Mettu DL, Kuchipudi VB. Analytical Approaches for Voice Recognition: Security Oriented Techniques in Cyber Attacks. JOURNAL OF CRITICAL REVIEWS. 2020;7(19).

13. Bernstein DJ. ChaCha, a variant of Salsa20. 2008. Disponible sur: https://cr.yp.to/chacha/chacha-20080128.pdf (Consulté le 16 décembre 2023).

14. Bernstein DJ. The Salsa20 family of stream ciphers. 2007. Disponible sur: http://cr.yp.to/papers.html#salsafamily (Consulté le 16 décembre 2023). doi: 10.1007/978-3-540-68351-3_8

15. Aoki K, Ichikawa T, Kanda M, Matsui M, Moriai S. Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms — Design and Analysis. Selected Areas in Cryptography 2000. pp. 39-56. doi: 10.1007/3-540-44983-3_4

16. Bracewell RN. The Fourier transform and its applications. New York: McGraw-Hill; 1986. doi:10.2307/2314845.

17. Abdallah HA, Meshoul S. A Multilayered Audio Signal Encryption Approach for Secure Voice Communication. Electronics. 2022;12(1):2. doi: 10.3390/electronics12010002.

18. Gamboa AJP, Díaz-Guerra DD. Artificial Intelligence for the development of qualitative studies. LatIA 2023;1:4-4. https://doi.org/10.62486/latia20234.

19. Pleshkova S, Kinanev D, Bekiarski A. Secure Audio Information Transmission with Encryption Algorithms in PKI. In: 2018 International Conference on High Technology for Sustainable Development (HiTech). IEEE; 2018. p. 1-4. doi: 10.1109/HiTech.2018.8566659.

20. Fernandez De Loaysa Babiano L, Macfarlane R, Davies SR. Evaluation of live forensic techniques, towards Salsa20-Based cryptographic ransomware mitigation. Forensic Science International: Digital Investigation. 2023;46:301572. doi: 10.1016/j.fsidi.2023.301572.

21. Medeiros VN, Silvestre B, Borges VCM. Multi-objective routing aware of mixed IoT traffic for low-cost wireless Backhauls. J Internet Serv Appl. 2019;10(1):9. doi: 10.1186/s13174-019-0108-9.

22. Kubilay MY, Kiraz MS, Mantar HA. KORGAN: An Efficient PKI Architecture Based on PBFT Through Dynamic Threshold Signatures. The Computer Journal. 2021;64(4):564-574. doi: 10.1093/comjnl/bxaa081.

23. Shaaban OA, Yildirim R, Alguttar AA. Audio Deepfake Approaches. IEEE Access. 2023;11:132652-132682. doi: 10.1109/ACCESS.2023.3333866.

24. Chavez-Cano AM. Artificial Intelligence Applied to Telemedicine: opportunities for healthcare delivery in rural areas. LatIA 2023;1:3-3. https://doi.org/10.62486/latia20233.

25. Bansal V, Pahwa G, Kannan N. Cough Classification for COVID-19 based on audio mfcc features using Convolutional Neural Networks. In: 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). IEEE; 2020. pp. 604-608. doi: 10.1109/GUCON48875.2020.9231094.

26. Seo S, Kim C, Kim J-H. Convolutional Neural Networks Using Log Mel-Spectrogram Separation for Audio Event Classification with Unknown Devices. JWE. 2022. doi: 10.13052/jwe1540-9589.21216.

27. Sudha V, Ganeshbabu TR. A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning. Computers,

1. Materials & Continua. 2020;66(1):827-842. doi: 10.32604/cmc.2020.012008.

28. Lin Y-J, et al. Artificial Intelligence of Things Wearable System for Cardiac Disease Detection. In: 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems

2. (AICAS). IEEE; 2019. pp. 67-70. doi: 10.1109/AICAS.2019.8771630.

29. Hameed ME, Ibrahim MM, Manap NA, Mohammed AA. A lossless compression and encryption mechanism for remote monitoring of ECG data using Huffman coding and CBC-AES. Future Generation Computer Systems. 2020;111:829-840. doi: 10.1016/j.future.2019.10.010.

30. Lima PM, Da Silva CKP, De Farias CM, Carvalho LK, Moreira MV. Event-based cryptography for automation networks of cyber-physical systems using the stream cipher ChaCha20. IFAC-PapersOnLine. 2022;55(28):58-65. doi: 10.1016/j.ifacol.2022.10.324.

31. Rathod C, Advani N, Gonsai A. Comparative Analysis of Encryption and Decryption Algorithms for Audio. 2018. doi: 10.9756/IAJCS/V10I1/1810098.

32. Cano CAG, Troya ALC. Artificial Intelligence applied to teaching and learning processes. LatIA 2023;1:2-2. https://doi.org/10.62486/latia20232.

33. CS 101- Sample Sound Files. Disponible sur: https://www2.cs.uic.edu/~i101/SoundFiles/ (Consulté le 8 mars 2024).

34. https://www.soundjay.com/human/sounds/heartbeat-01a.mp3

35. Shen M, Tang Z. Audio Signal and Troubleshooting System Based on Wireless Sensor. International Journal of Online and Biomedical Engineering (iJOE). 2018;14(06):113-125. doi: 10.3991/ijoe.v14i06.8702.

36. Telegram N, Sahu PC, Panda S, Kandasamy N. USRP Based Digital Audio Broadcasting Using OFDM in Virtual and Remote Laboratory. International Journal of Online and Biomedical Engineering (iJOE). 2019;15(13):77-85. doi: 10.3991/ijoe.v15i13.8761.

37. Willems C, Meinel C. Tele-Lab IT-Security: an Architecture for an online virtual IT Security Lab. International Journal of Online and Biomedical Engineering (iJOE). 2008;4(2):31-37. doi: 10.3991/ijoe.v4i2.497.

38. Panyapanuwat P, Kamonsantiroj S, Pipanmaekaporn L. Similarity-preserving hash for content-based audio retrieval using unsupervised deep neural networks. International Journal of Electrical and Computer Engineering. 2021;11(1):879. DOI: 10.11591/ijece.v11i1.pp879-891.

39. Maradithaya S, Katti A. Sentimental analysis of audio based customer reviews without textual conversion. International Journal of Electrical and Computer Engineering (IJECE). 2024;14(1):653-661. DOI: http://doi.org/10.11591/ijece.v14i1.pp653-66.1

40. Khalifa Boutahir M, Hessane A, Lasri I, Benchikh S, Farhaoui Y, Azrour M. Dynamic Threshold Fine-Tuning in Anomaly Severity Classification for Enhanced Solar Power Optimization. Data and Metadata. 2023; 2:94-94. DOI: https://doi.org/10.56294/dm202394.

41. Lasri I, Riadsolh A, El Belkacemi M. Toward an effective analysis of COVID-19 Moroccan business survey data using machine learning techniques. In: the 13th International Conference on Machine Learning and Computing. 2021. pp. 50-58. DOI: 10.1145/3457682.3457690.

Downloads

Published

2024-01-01

Issue

Section

Original

How to Cite

1.
Amraoui M, Lasri I, Omary F, Boutahir MK. Securing Biomedical Audio Data in IoT Healthcare Systems: An Evaluation of Encryption Methods for Enhanced Privacy. Data and Metadata [Internet]. 2024 Jan. 1 [cited 2024 Dec. 21];3:365. Available from: https://dm.ageditor.ar/index.php/dm/article/view/283