Systematization of research on the incidence of pesticides in people, use of biomarkers

Authors

DOI:

https://doi.org/10.56294/dm2024253

Keywords:

South America, Pesticides, Biomarker, Limitations

Abstract

Currently the use of pesticides in agriculture has expanded in the search for greater productivity. These products can harm people's health in various ways. These effects can be captured through the use of genotoxicity biomarkers. The objective of this research is to systematize studies on biomarkers of genotoxicity of people exposed to pesticides in South America. The PRISMA method was applied to determine the studies to be analyzed. 15 documents met the inclusion criteria. Among the adverse health effects perceived in studies are neurological, respiratory, dermatological and endocrine disorders, as well as an increased risk of cancer. The main biomarkers identified are the comet assay, the cytokinesis blockade micronucleus assay, and the buccal cytoma micronucleus assay. Polymerase chain reaction, chromosomal aberrations, flow cytometry, and fluorescence in situ hybridization were also taken into account. Limitations were determined by biomarker. The usefulness of using multiple biomarkers is highlighted for a more complete and precise evaluation of pesticide exposure and genotoxic damage in agricultural workers in South America. The establishment of protective measures for workers against the use of pesticides and opting for the use of pesticides of biological origin will contribute to the preservation of people's health

References

1. Coalova I, Mencacci S, Fassiano, A. Genotoxicidad de mezclas de pesticidas: ¿algo más que la suma de las partes? Asociación Toxicológica Argentina; Acta Toxicológica Argentina. 2013, 21(1): 5-14. https://ri.conicet.gov.ar/bitstream/handle/11336/20830/CONICET_Digital_Nro.25201.pdf?sequence=1&isAllowed=y

2. Organización Mundial de la Salud. Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación 2019. Ginebra: Organización Mundial de la Salud; Licencia: CC BY-NC-SA 3.0 IGO. 2020. https://www.paho.org/es/documentos/clasificacion-recomendada-por-oms-plaguicidas-por-peligro-que-presentan-directrices-para#:~:text=En%20este%20documento%20se%20establece%20un%20sistema%20de,%C3%BAnica%20o%20repetida%20durante%20un%20periodo%20relativamente%20breve%29.

3. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021, 9(3): 1-33. https://doi.org/10.3390/TOXICS9030042

4. Roman P, Cardona D, Sempere L, Carvajal F. Microbiota and organophosphates. NeuroToxicology. 2019, 75: 200–208. https://doi.org/10.1016/J.NEURO.2019.09.013

5. Tsai YH, Lein PJ . Mechanisms of organophosphate neurotoxicity. Current Opinion in Toxicology. 2021, 26: 49–60. https://doi.org/10.1016/J.COTOX.2021.04.002

6. Essiedu JA, Adepoju FO, Ivantsova MN. Benefits and limitations in using biopesticides: A review. AIP Conference Proceedings. 2020, 2313(1):080002. https://doi.org/10.1063/5.0032223

7. Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, et al. Exposure Routes and Health Risks Associated with Pesticide Application. Toxics. 2022, 10(6):335,1-23. https://doi.org/10.3390/TOXICS10060335

8. Panis C, Kawassaki AC, Crestani AP, Pascotto CR, Bortoloti DS, Vicentini GE, et al. Evidence on Human Exposure to Pesticides and the Occurrence of Health Hazards in the Brazilian Population: A Systematic Review. Frontiers in Public Health. 2021, 9: 787438,1-22. https://doi.org/10.3389/FPUBH.2021.787438

9. Sommer S, Buraczewska I, Kruszewski M. Micronucleus Assay: The State of Art, and Future Directions. International Journal of Molecular Sciences. 2020, 21(4): 1534,1-19. https://doi.org/10.3390/IJMS21041534

10. Ataei M, Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicology and Applied Pharmacology. 2022, 456: 116280. https://doi.org/10.1016/J.TAAP.2022.116280

11. Sánchez J, Milić M, Kašuba V, Tenorio MG, Montiel JM, Bonassi S, et al. A Systematic Review of Studies on Genotoxicity and Related Biomarkers in Populations Exposed to Pesticides in Mexico. Toxics, 2021, 9(11): 272. https://doi.org/10.3390/TOXICS9110272

12. Lee KM, Park SY, Lee K, Oh SS, Ko SB. Pesticide metabolite and oxidative stress in male farmers exposed to pesticide. Annals of Occupational and Environmental Medicine. 2017, 29(1): 1–7. https://doi.org/10.1186/S40557-017-0162-3/TABLES/4

13. Sule RO, Condon L, Gomes A. A Common Feature of Pesticides: Oxidative Stress—The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxidative Medicine and Cellular Longevity, 2022, 2022:1-31. https://doi.org/10.1155/2022/5563759

14. Corrales L, Muñoz M. Estrés oxidativo: origen, evolución y consecuencias de la toxicidad del oxígeno. Nova. 2012, 10(18): 213-225. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-24702012000200009&lng=en.

15. Ganie SY, Javaid D, Hajam YA, Reshi MS. Mechanisms and treatment strategies of organophosphate pesticide induced neurotoxicity in humans: A critical appraisal. Toxicology. 2022, 472: 153181. https://doi.org/10.1016/J.TOX.2022.153181

16. Terradas M, Martín M, Genescà A. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis. Archives of Toxicology. 2016, 90(11): 2657–2667. https://doi.org/10.1007/S00204-016-1818-4

17. Cayir A, Coskun M, Coskun M, Cobanoglu H. Comet assay for assessment of DNA damage in greenhouse workers exposed to pesticides. Biomarkers : Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals. 2019, 24(6): 592–599. https://doi.org/10.1080/1354750X.2019.1610498

18. Ramírez C, Lezama P, Simon B, Garcia L, Lee S-E, Moon J-K, et al. Evaluation of Cytotoxic and Genotoxic Risk Derived from Exposure to Pesticides in Corn Producers in Tlaxcala, Mexico. Applied Sciences. 2022, 12(18):9050. https://doi.org/10.3390/APP12189050

19. Cepeda S, Forero M, Cárdenas D, Martínez M, Rondón M (2020). Chromosomal Instability in Farmers Exposed to Pesticides: High Prevalence of Clonal and Non-Clonal Chromosomal Alterations. Risk Management and Healthcare Policy 2020, 13: 97-110. https://doi.org/10.2147/RMHP.S230953

20. Anjitha R, Antony A, Shilpa O, Anupama KP, Mallikarjunaiah S, Gurushankara HP. Malathion induced cancer-linked gene expression in human lymphocytes. Environmental Research, 2020, 182: 109131. https://doi.org/10.1016/J.ENVRES.2020.109131

21. Mesnage R, Brandsma I, Moelijker N, Zhang G, Antoniou MN. Genotoxicity evaluation of 2,4-D, dicamba and glyphosate alone or in combination with cell reporter assays for DNA damage, oxidative stress and unfolded protein response. Food and Chemical Toxicology. 2021, 157: 112601. https://doi.org/10.1016/J.FCT.2021.112601

22. Yang KJ, Lee J, Park H L. Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. International Journal of Environmental Research and Public Health. 2020, 17(14):5030. https://doi.org/10.3390/IJERPH17145030

23. de Oliveira AF, de Souza MR, Benedetti D, Scotti AS, Piazza LS, Garcia AL, et al. Investigation of pesticide exposure by genotoxicological, biochemical, genetic polymorphic and in silico analysis. Ecotoxicology and Environmental Safety. 2019, 179:135–142. https://doi.org/10.1016/J.ECOENV.2019.04.023

24. Fernandes SP, Kvitko K, da Silva J, Rohr P, Bandinelli E, Kahl VF, et al. Influence of vitamin intake and MTHFR polymorphism on the levels of DNA damage in tobacco farmers. International Journal of Occupational and Environmental Health. 2017, 23(4): 311-318. https://doi.org/10.1080/10773525.2018.1500796

25. Jacobsen CH, Cardoso CC, Gehlen TC, Regina dos Santos C, Santos M C. Immune response of Brazilian farmers exposed to multiple pesticides. Ecotoxicology and Environmental Safety. 2020, 202: 110912. https://doi.org/10.1016/J.ECOENV.2020.110912

26. Ramos JS, Pedroso TM, Godoy FR, Batista RE, de Almeida FB, Francelin C, et al. Multi-biomarker responses to pesticides in an agricultural population from Central Brazil. The Science of the Total Environment. 2021, 754: 141893. https://doi.org/10.1016/J.SCITOTENV.2020.141893

27. Meléndez MP, Valbuena DS, Cepeda S, Rangel N, Forero M, Martínez M, et al. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Frontiers in Genetics, 2022, 13:820209. https://doi.org/10.3389/FGENE.2022.820209/FULL

28. Dalberto D, Alves J, Garcia AL, de Souza MR, Abella AP, Thiesen FV,et al. Exposure in the tobacco fields: Genetic damage and oxidative stress in tobacco farmers occupationally exposed during harvest and grading seasons. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2022, 878:503485. https://doi.org/10.1016/J.MRGENTOX.2022.503485

29. Kahl VF, Simon D, de Souza MR, da Rosa VH, Nicolau C, Da Silva FR, et al. Base excision repair (OGG1 and XRCC1) and metabolism (PON1) gene polymorphisms act on modulation of DNA damage and immune parameters in tobacco farmers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2018 836, 9–18. https://doi.org/10.1016/J.MRGENTOX.2018.04.001

30. Aiassa DE, Mañas FJ, Gentile NE, Bosch B, Salinero MC, Gorla NB. Evaluation of genetic damage in pesticides applicators from the province of Córdoba, Argentina. Environmental Science and Pollution Research International. 2019, 26(20):20981–20988. https://doi.org/10.1007/S11356-019-05344-2

31. Hutter HP, Poteser M, Lemmerer K, Wallner P, Sanavi SS, Kundi M, et al. Indicators of Genotoxicity in Farmers and Laborers of Ecological and Conventional Banana Plantations in Ecuador. International Journal of Environmental Research and Public Health. 2020, 17(4): 1435. https://doi.org/10.3390/IJERPH17041435

32. Barrón J, Tirado N, Barral J, Ali I, Levi, M., Stenius U, et al. Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. Science of The Total Environment. 2019, 695: 133942. https://doi.org/10.1016/J.SCITOTENV.2019.133942

33. Kahl VF, da Silva FR, Alves J, da Silva GF, Picinini J, Dhillon VS, et al. Role of PON1, SOD2, OGG1, XRCC1, and XRCC4 polymorphisms on modulation of DNA damage in workers occupationally exposed to pesticides. Ecotoxicology and Environmental Safety. 2018, 159: 164–171. https://doi.org/10.1016/J.ECOENV.2018.04.052

Downloads

Published

2024-01-01

Issue

Section

Original

How to Cite

1.
Maldonado Mariño EV, Siza Saquinga DO, Guato Canchinia DE, Ramos Velastegui AJ. Systematization of research on the incidence of pesticides in people, use of biomarkers. Data and Metadata [Internet]. 2024 Jan. 1 [cited 2024 Sep. 16];3:253. Available from: https://dm.ageditor.ar/index.php/dm/article/view/320