Drones in Action: A Comprehensive Analysis of Drone-Based Monitoring Technologies

Authors

  • Ayman Yafoz Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 22254, Saudi Arabia Author https://orcid.org/0000-0003-0320-2583

DOI:

https://doi.org/10.56294/dm2024.364

Keywords:

Unmanned Aerial Vehicles (UAVs), Applications, Image Processing, Datasets, Trends

Abstract

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are extensively employed in various real-time applications, including remote sensing, disaster management and recovery, logistics, military operations, search and rescue, law enforcement, and crowd monitoring and control, owing to their affordability, rapid processing capabilities, and high-resolution imagery. Additionally, drones mitigate risks associated with terrorism, disease spread, temperature fluctuations, crop pests, and criminal activities. Consequently, this paper thoroughly analyzes UAV-based surveillance systems, exploring the opportunities, challenges, techniques, and future trends of drone technology. It covers common image preprocessing methods for drones and highlights notable one- and two-stage deep learning algorithms used for object detection in drone-captured images. The paper also offers a valuable compilation of online datasets containing drone-acquired photographs for researchers. Furthermore, it compares recent UAV-based imaging applications, detailing their purposes, descriptions, findings, and limitations. Lastly, the paper addresses potential future research directions and challenges related to drone usage

References

1. Yao H, Qin R, Chen X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens (Basel) [Internet]. 2019;11(12). Available from: https://www.mdpi.com/2072-4292/11/12/1443

2. Skogan WG. The future of CCTV. Vol. 18, Criminology and Public Policy. Wiley-Blackwell; 2019 Feb.

3. Husman MA, Albattah W, Abidin ZZ, Mustafah YMohd, Kadir K, Habib S, et al. Unmanned Aerial Vehicles for Crowd Monitoring and Analysis. Electronics (Basel) [Internet]. 2021;10(23). Available from: https://www.mdpi.com/2079-9292/10/23/2974

4. Chin R, Catal C, Kassahun A. Plant disease detection using drones in precision agriculture. Vol. 24, Precision Agriculture. Springer; 2023. p. 1663–82.

5. Nowak MM, Dziób K, Bogawski P. Unmanned Aerial Vehicles (UAVs) in environmental biology: A review. Eur J Ecol. 2019 Jan 1;4(2):56–74.

6. Sherstjuk V, Zharikova M, Sokol I. Forest Fire-Fighting Monitoring System Based on UAV Team and Remote Sensing. In: 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). 2018. p. 663–8.

7. Tuyishimire E, Bagula AB, Rekhis S, Boudriga N. Real-time data muling using a team of heterogeneous unmanned aerial vehicles. ArXiv [Internet]. 2019;abs/1912.08846. Available from: https://api.semanticscholar.org/CorpusID:209415203

8. Chennam Krishna Keerthi and Aluvalu R and SS. An Authentication Model with High Security for Cloud Database. In: Das Santosh Kumar and Samanta S and DN and PBS and HAE, editor. Architectural Wireless Networks Solutions and Security Issues [Internet]. Singapore: Springer Singapore; 2021. p. 13–25. Available from: https://doi.org/10.1007/978-981-16-0386-0_2

9. Liang H, Lee SC, Bae W, Kim J, Seo S. Towards UAVs in Construction: Advancements, Challenges, and Future Directions for Monitoring and Inspection. Drones [Internet]. 2023;7(3). Available from: https://www.mdpi.com/2504-446X/7/3/202

10. International Forum to Advance First Responder Innovation’s (IFAFRI). The International Forum to Advance Capability Gap 6 “Deep Dive” Analysis [Internet]. 2019 [cited 2023 Nov 8]. Available from: https://www.internationalresponderforum.org/sites/default/files/2023-02/gap6_analysis.pdf

11. Abderahman Rejeb Karim Rejeb SJS, Treiblmaier H. Drones for supply chain management and logistics: a review and research agenda. International Journal of Logistics Research and Applications [Internet]. 2023;26(6):708–31. Available from: https://doi.org/10.1080/13675567.2021.1981273

12. Kunze O. Replicators, Ground Drones and Crowd Logistics A Vision of Urban Logistics in the Year 2030. Transportation Research Procedia [Internet]. 2016;19:286–99. Available from: https://www.sciencedirect.com/science/article/pii/S2352146516308742

13. The Business Research Company. Military Gliders and Drones Global Market Report 2022. 2022.

14. Gargalakos M. The role of unmanned aerial vehicles in military communications: application scenarios, current trends, and beyond. The Journal of Defense Modeling and Simulation [Internet]. 2024;21(3):313–21. Available from: https://doi.org/10.1177/15485129211031668

15. Scherer J, Yahyanejad S, Hayat S, Yanmaz E, Andre T, Khan A, et al. An Autonomous Multi-UAV System for Search and Rescue. Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use [Internet]. 2015; Available from: https://api.semanticscholar.org/CorpusID:207225452

16. Mavic 2 Enterprise. POLICE OPERATIONS-MADE MORE EFFECTIVE BY DRONES. 2017.

17. UK Metropolitan Police. Use of Drones in policing [Internet]. [cited 2024 Aug 8]. Available from: https://www.met.police.uk/foi-ai/metropolitan-police/d/november-2022/use-of-drones-in-policing/

18. Royo P, Asenjo À, Trujillo J, Çetin E, Barrado C. Enhancing Drones for Law Enforcement and Capacity Monitoring at Open Large Events. Drones [Internet]. 2022;6(11). Available from: https://www.mdpi.com/2504-446X/6/11/359

19. Chen W, Shang G, Hu K, Zhou C, Wang X, Fang G, et al. A Monocular-Visual SLAM System with Semantic and Optical-Flow Fusion for Indoor Dynamic Environments. Micromachines (Basel) [Internet]. 2022;13(11). Available from: https://www.mdpi.com/2072-666X/13/11/2006

20. Mohsan SAH, Zahra Q ul A, Khan MA, Alsharif MH, Elhaty IA, Jahid A. Role of Drone Technology Helping in Alleviating the COVID-19 Pandemic. Vol. 13, Micromachines. MDPI; 2022.

21. Gu X, Zhang G. A survey on UAV-assisted wireless communications: Recent advances and future trends. Comput Commun [Internet]. 2023 Aug;208(C):44–78. Available from: https://doi.org/10.1016/j.comcom.2023.05.013

22. Thakur N, Nagrath P, Jain R, Saini D, Sharma N, Hemanth DJ. Autonomous pedestrian detection for crowd surveillance using deep learning framework. Soft Comput [Internet]. 2023 May;27(14):9383–99. Available from: https://doi.org/10.1007/s00500-023-08289-4

23. Bander Alzahrani Ahmed Barnawi AIAARAMS. A Secure Key Agreement Scheme for Unmanned Aerial Vehicles-Based Crowd Monitoring System. Computers, Materials & Continua [Internet]. 2022;70(3):6141–58. Available from: http://www.techscience.com/cmc/v70n3/44981

24. Weng W, Wang J, Shen L, Song Y. Review of analyses on crowd-gathering risk and its evaluation methods. Journal of safety science and resilience [Internet]. 2023;4(1):93–107. Available from: http://dx.doi.org/10.1016/j.jnlssr.2022.10.004

25. Amosa TI, Sebastian P, Izhar LI, Ibrahim O, Ayinla LS, Bahashwan AA, et al. Multi-camera multi-object tracking: A review of current trends and future advances. Neurocomputing [Internet]. 2023;552:126558. Available from: https://www.sciencedirect.com/science/article/pii/S0925231223006811

26. Zhou Y, Dong Y, Hou F, Wu J. Review on Millimeter-Wave Radar and Camera Fusion Technology. Sustainability [Internet]. 2022;14(9). Available from: https://www.mdpi.com/2071-1050/14/9/5114

27. Gündüz MŞ, Işık G. A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models. J Real Time Image Process [Internet]. 2023;20(1):5. Available from: https://doi.org/10.1007/s11554-023-01276-w

28. Ye L, Zhang K, Xiao W, Sheng Y, Su D, Wang P, et al. Gaussian mixture model of ground filtering based on hierarchical curvature constraints for airborne lidar point clouds. Photogramm Eng Remote Sensing. 2021 Sep 1;87(9):615–30.

29. Wang Y, Xi X, Wang C, Yang X, Wang P, Nie S, et al. A Novel Method Based on Kernel Density for Estimating Crown Base Height Using UAV-Borne LiDAR Data. IEEE Geoscience and Remote Sensing Letters. 2022;19:1–5.

30. Zhang G, Yin J, Deng P, Sun Y, Zhou L, Zhang K. Achieving Adaptive Visual Multi-Object Tracking with Unscented Kalman Filter. Sensors [Internet]. 2022;22(23). Available from: https://www.mdpi.com/1424-8220/22/23/9106

31. Ammar A, Fredj H Ben, Souani C. Accurate Realtime Motion Estimation Using Optical Flow on an Embedded System. Electronics (Basel) [Internet]. 2021;10(17). Available from: https://www.mdpi.com/2079-9292/10/17/2164

32. Ruszczak B, Michalski P, Tomaszewski M. Overview of Image Datasets for Deep Learning Applications in Diagnostics of Power Infrastructure. Sensors [Internet]. 2023;23(16). Available from: https://www.mdpi.com/1424-8220/23/16/7171

33. Laghari AA, Jumani AK, Laghari RA, Li H, Karim S, Khan AA. Unmanned Aerial Vehicles Advances in Object Detection and Communication Security Review. Cognitive Robotics [Internet]. 2024; Available from: https://www.sciencedirect.com/science/article/pii/S2667241324000090

34. Qin S, Li L. Visual Analysis of Image Processing in the Mining Field Based on a Knowledge Map. Sustainability [Internet]. 2023;15(3). Available from: https://www.mdpi.com/2071-1050/15/3/1810

35. Li P, Khan J. Feature extraction and analysis of landscape imaging using drones and machine vision. Soft comput [Internet]. 2023;27(24):18529–47. Available from: https://doi.org/10.1007/s00500-023-09352-w

36. Chang Y, Cheng Y, Murray J, Huang S, Shi G. The HDIN Dataset: A Real-World Indoor UAV Dataset with Multi-Task Labels for Visual-Based Navigation. Drones [Internet]. 2022;6(8). Available from: https://www.mdpi.com/2504-446X/6/8/202

37. Zhu Y, Tang H. Automatic Damage Detection and Diagnosis for Hydraulic Structures Using Drones and Artificial Intelligence Techniques. Remote Sens (Basel) [Internet]. 2023;15(3). Available from: https://www.mdpi.com/2072-4292/15/3/615

38. Yuan S, Sun B, Zuo Z, Huang H, Wu P, Li C, et al. IRSDD-YOLOv5: Focusing on the Infrared Detection of Small Drones. Drones [Internet]. 2023;7(6). Available from: https://www.mdpi.com/2504-446X/7/6/393

39. Sun H, Yang J, Shen J, Liang D, Ning-Zhong L, Zhou H. TIB-Net: Drone Detection Network With Tiny Iterative Backbone. IEEE Access. 2020;8:130697–707.

40. Chaki J, Dey N. A Beginner’s Guide to Image Preprocessing Techniques [Internet]. Dey N, editor. 2019. 1–97 p. Available from: https://www.crcpress.com/Intelligent-Signal-Processing-and-Data-

41. Chen J, Yang H, Xu R, Hussain S. Application and Analysis of Remote Sensing Image Processing Technology in Robotic Power Inspection. J Robot [Internet]. 2023 Jan;2023. Available from: https://doi.org/10.1155/2023/9943372

42. Jiang J, Zheng H, Ji X, Cheng T, Tian Y, Zhu Y, et al. Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring. Sensors [Internet]. 2019;19(3). Available from: https://www.mdpi.com/1424-8220/19/3/747

43. Li M, Yang C, Zhang Q. Soil and Crop Sensing for Precision Crop Production (Agriculture Automation and Control). 1st ed. Springer; 2022. 1–336 p.

44. Mishra KN. An Efficient Palm-Dorsa-Based Approach for Vein Image Enhancement and Feature Extraction in Cloud Computing Environment. In: Al-Turjman F, editor. Unmanned Aerial Vehicles in Smart Cities [Internet]. Cham: Springer International Publishing; 2020. p. 85–106. Available from: https://doi.org/10.1007/978-3-030-38712-9_6

45. Maharana K, Mondal S, Nemade B. A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings [Internet]. 2022;3(1):91–9. Available from: https://www.sciencedirect.com/science/article/pii/S2666285X22000565

46. Elgendy M. Deep Learning for Vision Systems. 1st ed. Manning Publications; 2020. 1–410 p.

47. Dey S. Hands-On Image Processing with Python. Packt Publishing; 2018. 1–492 p.

48. J A, Suresh L P. A novel fast hybrid face recognition approach using convolutional Kernel extreme learning machine with HOG feature extractor. Measurement: Sensors [Internet]. 2023;30:100907. Available from: https://www.sciencedirect.com/science/article/pii/S266591742300243X

49. Boesch G. Image Recognition: The Basics and Use Cases (2024 Guide) [Internet]. 2023 [cited 2024 Apr 2]. Available from: https://viso.ai/computer-vision/image-recognition/

50. Adeshina SO, Ibrahim H, Teoh SS, Hoo SC. Custom Face Classification Model for Classroom Using Haar-Like and LBP Features with Their Performance Comparisons. Electronics (Basel) [Internet]. 2021;10(2). Available from: https://www.mdpi.com/2079-9292/10/2/102

51. Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2023. p. 7464–75.

52. Terven J, Córdova-Esparza DM, Romero-González JA. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach Learn Knowl Extr [Internet]. 2023 Nov;5(4):1680–716. Available from: http://dx.doi.org/10.3390/make5040083

53. Mittal P, Singh R, Sharma A. Deep learning-based object detection in low-altitude UAV datasets: A survey. Image Vis Comput [Internet]. 2020;104:104046. Available from: https://www.sciencedirect.com/science/article/pii/S0262885620301785

54. Xiao Y, Tian Z, Yu J, Zhang Y, Liu S, Du S, et al. A review of object detection based on deep learning. Multimed Tools Appl [Internet]. 2020;79(33):23729–91. Available from: https://doi.org/10.1007/s11042-020-08976-6

55. Kaur J, Singh W. Tools, techniques, datasets and application areas for object detection in an image: a review. Multimed Tools Appl [Internet]. 2022;81(27):38297–351. Available from: https://doi.org/10.1007/s11042-022-13153-y

56. Svanström F, Alonso-Fernandez F, Englund C. A dataset for multi-sensor drone detection. Data Brief [Internet]. 2021;39:107521. Available from: https://www.sciencedirect.com/science/article/pii/S2352340921007976

57. Vélez S, Vacas R, Martín H, Ruano-Rosa D, Álvarez S. High-Resolution UAV RGB Imagery Dataset for Precision Agriculture and 3D Photogrammetric Reconstruction Captured over a Pistachio Orchard (Pistacia vera L.) in Spain. Data (Basel) [Internet]. 2022;7(11). Available from: https://www.mdpi.com/2306-5729/7/11/157

58. Maulit A, Nugumanova A, Apayev K, Baiburin Y, Sutula M. A Multispectral UAV Imagery Dataset of Wheat, Soybean and Barley Crops in East Kazakhstan. Data (Basel) [Internet]. 2023;8(5). Available from: https://www.mdpi.com/2306-5729/8/5/88

59. Suo J, Wang T, Zhang X, Chen H, Zhou W, Shi W. HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection. Sci Data [Internet]. 2023;10(1):227. Available from: https://doi.org/10.1038/s41597-023-02066-6

60. Krestenitis M, Raptis EK, Kapoutsis ACh, Ioannidis K, Kosmatopoulos EB, Vrochidis S, et al. CoFly-WeedDB: A UAV image dataset for weed detection and species identification. Data Brief [Internet]. 2022;45:108575. Available from: https://www.sciencedirect.com/science/article/pii/S235234092200782X

61. Kraft M, Piechocki M, Ptak B, Walas K. Autonomous, Onboard Vision-Based Trash and Litter Detection in Low Altitude Aerial Images Collected by an Unmanned Aerial Vehicle. Remote Sens (Basel) [Internet]. 2021;13(5). Available from: https://www.mdpi.com/2072-4292/13/5/965

62. Wang J, Teng X, Li Z, Yu Q, Bian Y, Wei J. VSAI: A Multi-View Dataset for Vehicle Detection in Complex Scenarios Using Aerial Images. Drones [Internet]. 2022;6(7). Available from: https://www.mdpi.com/2504-446X/6/7/161

63. Bemposta Rosende S, Ghisler S, Fernández-Andrés J, Sánchez-Soriano J. Dataset: Traffic Images Captured from UAVs for Use in Training Machine Vision Algorithms for Traffic Management. Data (Basel) [Internet]. 2022;7(5). Available from: https://www.mdpi.com/2306-5729/7/5/53

64. Brown AM, Allen SJ, Kelly N, Hodgson AJ. Using Unoccupied Aerial Vehicles to estimate availability and group size error for aerial surveys of coastal dolphins. Remote Sens Ecol Conserv [Internet]. 2023;9(3):340–53. Available from: https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1002/rse2.313

65. Milz S, Wäldchen J, Abouee A, Ravichandran AA, Schall P, Hagen C, et al. The HAInich: A multidisciplinary vision data-set for a better understanding of the forest ecosystem. Sci Data [Internet]. 2023;10(1):168. Available from: https://doi.org/10.1038/s41597-023-02010-8

66. Guo J, Liu X, Bi L, Liu H, Lou H. UN-YOLOv5s: A UAV-Based Aerial Photography Detection Algorithm. Sensors [Internet]. 2023;23(13). Available from: https://www.mdpi.com/1424-8220/23/13/5907

67. Fei S, Hassan MA, Xiao Y, Su X, Chen Z, Cheng Q, et al. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis Agric [Internet]. 2023;24(1):187–212. Available from: https://doi.org/10.1007/s11119-022-09938-8

68. Di Sorbo A, Zampetti F, Visaggio A, Di Penta M, Panichella S. Automated Identification and Qualitative Characterization of Safety Concerns Reported in UAV Software Platforms. ACM Trans Softw Eng Methodol [Internet]. 2023 Apr;32(3). Available from: https://doi.org/10.1145/3564821

69. Kumar Yadav P, Alex Thomasson J, Hardin R, Searcy SW, Braga-Neto U, Popescu SC, et al. Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery. Comput Electron Agric [Internet]. 2023;204:107551. Available from: https://www.sciencedirect.com/science/article/pii/S0168169922008596

70. Chao Chen Yankun Chen HJLCZLHSJHHWSFXZ. Correction: 3D Model Construction and Ecological Environment Investigation on a Regional Scale Using UAV Remote Sensing. Intelligent Automation & Soft Computing [Internet]. 2024;39(1):113–4. Available from: http://www.techscience.com/iasc/v39n1/55873

71. Beltrán-Marcos D, Suárez-Seoane S, Fernández-Guisuraga JM, Fernández-García V, Marcos E, Calvo L. Relevance of UAV and sentinel-2 data fusion for estimating topsoil organic carbon after forest fire. Geoderma [Internet]. 2023;430:116290. Available from: https://www.sciencedirect.com/science/article/pii/S0016706122005973

72. SONG C yu, ZHANG F, LI J sheng, XIE J yi, YANG C, ZHOU H, et al. Detection of maize tassels for UAV remote sensing image with an improved YOLOX Model. J Integr Agric [Internet]. 2023;22(6):1671–83. Available from: https://www.sciencedirect.com/science/article/pii/S2095311922002465

73. Charmaine Cruz Jerome O’Connell KMJRMPMP, Connolly J. Assessing the effectiveness of UAV data for accurate coastal dune habitat mapping. Eur J Remote Sens [Internet]. 2023;56(1):2191870. Available from: https://doi.org/10.1080/22797254.2023.2191870

74. Ying Quan Mingze Li YHJL, Wang B. Tree species classification in a typical natural secondary forest using UAV-borne LiDAR and hyperspectral data. GIsci Remote Sens [Internet]. 2023;60(1):2171706. Available from: https://doi.org/10.1080/15481603.2023.2171706

75. Zhou Z, Yu X, Chen X. Object Detection in Drone Video with Temporal Attention Gated Recurrent Unit Based on Transformer. Drones [Internet]. 2023;7(7). Available from: https://www.mdpi.com/2504-446X/7/7/466

76. Gugan G, Haque A. Path Planning for Autonomous Drones: Challenges and Future Directions. Drones [Internet]. 2023;7(3). Available from: https://www.mdpi.com/2504-446X/7/3/169

77. Mohsan SAH, Othman NQH, Li Y, Alsharif MH, Khan MA. Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intell Serv Robot [Internet]. 2023;16(1):109–37. Available from: https://doi.org/10.1007/s11370-022-00452-4

78. Wang Z, Li Y, Wu S, Zhou Y, Yang L, Xu Y, et al. A survey on cybersecurity attacks and defenses for unmanned aerial systems. Journal of Systems Architecture [Internet]. 2023;138:102870. Available from: https://www.sciencedirect.com/science/article/pii/S1383762123000498

79. Al-Shareeda MA, Saare MA, Manickam S. Unmanned aerial vehicle: a review and future directions. Vol. 30, Indonesian Journal of Electrical Engineering and Computer Science. Institute of Advanced Engineering and Science; 2023. p. 778–86.

80. Mirzaei B, Nezamabadi-pour H, Raoof A, Derakhshani R. Small Object Detection and Tracking: A Comprehensive Review. Sensors [Internet]. 2023;23(15). Available from: https://www.mdpi.com/1424-8220/23/15/6887

81. Pavitha PP, Rekha KB, Safinaz S. RIOD:Reinforced Image-based Object Detection for Unruly Weather Conditions. Engineering, Technology and Applied Science Research. 2024 Feb 1;14(1):13052–7.

82. Alhafnawi M, Bany Salameh HA, Masadeh A, Al-Obiedollah H, Ayyash M, El-Khazali R, et al. A Survey of Indoor and Outdoor UAV-Based Target Tracking Systems: Current Status, Challenges, Technologies, and Future Directions. IEEE Access. 2023;11:68324–39

Downloads

Published

2024-09-02

Issue

Section

Original

How to Cite

1.
Yafoz A. Drones in Action: A Comprehensive Analysis of Drone-Based Monitoring Technologies. Data and Metadata [Internet]. 2024 Sep. 2 [cited 2024 Oct. 13];3:.364. Available from: https://dm.ageditor.ar/index.php/dm/article/view/364