Hybrid Ensemble Architecture for Brain Tumor Segmentation Using EfficientNetB4-MobileNetV3 with Multi-Path Decoders

Authors

DOI:

https://doi.org/10.56294/dm2025374

Keywords:

Ensemble Architecture, Brain Tumor, EfficientNetB4-MobileNetV3

Abstract

Brain tumor segmentation based on multi-modal magnetic resonance imaging is a challenging medical problem due to tumors heterogeneity, irregular boundaries, and inconsistent appearances. For this purpose, we propose a hybrid primal and dual ensemble architecture leveraging EfficientNetB4 and MobileNetV3 through a cross-network novel feature interaction mechanism and an adaptive ensemble learning approach. The proposed method enables segmentation by leveraging recent attention mechanisms, dedicated decoders, and uncertainty estimation techniques. The proposed model was extensively evaluated using the BraTS2019-2021 datasets, achieving an outstanding performance with mean Dice scores of 0.91, 0.87, and 0.83 on whole tumor, tumor core and enhancing tumor regions respectively. The proposed architecture achieves stable performance over a range of tumor types and sizes, with low relative computational cost.

References

1. Chen, Y., Wang, G., Li, M., & Zhou, J. (2019). Dual Path Networks for Brain Tumor Segmentation. IEEE Transactions on Medical Imaging, 38(12), 2843-2854. https://doi.org/10.1109/TMI.2019.2901672.

2. Abu Owida, H., AlMahadin, G., Al-Nabulsi, J. I., Turab, N., Abuowaida, S., & Alshdaifat, N. (2024). Automated classification of brain tumor-based magnetic resonance imaging using deep learning approach. International Journal of Electrical & Computer Engineering (2088-8708), 14(3).‏ DOI: https://doi.org/10.11591/ijece.v14i3.pp3150-3158

3. Owida, H. A., Al-Nabulsi, J. I., Turab, N. M., Alnaimat, F., Rababah, H., & Shakour, M. Y. (2021). Autocharging techniques for implantable medical applications. International Journal of Biomaterials, 2021(1), 6074657.‏ DOI: https://doi.org/10.1155/2021/6074657

4. S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive, template moderated, spatially varying statistical classification,” Medical Image Analysis, vol. 4, no. 1, pp. 43–55, 2000. doi: 10.1016/S1361-8415(00)00003-7.

5. A. W. Toga and P. M. Thompson, “The role of image registration in brain mapping,” Image and Vision Computing, vol. 19, no. 1–2, pp. 3–24, 2001. doi: 10.1016/S0262-8856(00)00055-X.

6. M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, “A brain tumor segmentation framework based on outlier detection,” Medical Image Analysis, vol. 8, no. 3, pp. 275–283, 2004. doi: 10.1016/j.media.2004.06.007.

7. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Lecture Notes in Computer Science, 9351, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28. DOI: https://doi.org/10.1007/978-3-319-24574-4_28

8. Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 97, 6105-6114.

9. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 1314-1324. https://doi.org/10.1109/ICCV.2019.00140. DOI: https://doi.org/10.1109/ICCV.2019.00140

10. B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y.Burren, N. Porz, J. Slotboom, R. Wiest, et al., The multimodal brain tumor imag esegmentation benchmark (BRATS), IEEE Trans. Med. Imaging 34 (10) (2014)1993–2024. DOI: https://doi.org/10.1109/TMI.2014.2377694

11. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, J.B. Freymann,K. Farahani, C. Davatzikos, Advancing the cancer genome atlas glioma MRIcollections with expert segmentation labels and radiomic features, Sci. Data 4(1) (2017) 1–13. DOI: https://doi.org/10.1038/sdata.2017.117

12. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R.T. Shinohara,C. Berger, S.M. Ha, M. Rozycki, et al., Identifying the best machine learningalgorithms for brain tumor segmentation, progression assessment, and overallsurvival prediction in the BRATS challenge, 2018, arXiv preprintarXiv:1811.02629

13. L. M. Fletcher-Heath, L. O. Hall, D. B. Goldgof, and F. R. Murtagh, “Automatic segmentation of non-enhancing brain tumors in magnetic resonance images,” Artificial Intelligence in Medicine, vol. 21, no. 1–3, pp. 43–63, 2001. doi: 10.1016/S0933-3657(00)00073-7. DOI: https://doi.org/10.1016/S0933-3657(00)00073-7

14. Li, Y., Li, C., Li, X., Wang, K., Rahaman, M. M., Sun, C., ... & Wang, Q. (2022). A comprehensive review of Markov random field and conditional random field approaches in pathology image analysis. Archives of Computational Methods in Engineering, 29(1), 609-639.‏ DOI: https://doi.org/10.1007/s11831-021-09591-w

15. M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh, and M. S. Silbiger, “Automatic tumor segmentation using knowledge-based techniques,” IEEE Transactions on Medical Imaging, vol. 17, no. 2, pp. 187–201, 1998. doi: 10.1109/42.700731. DOI: https://doi.org/10.1109/42.700731

16. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012), 1097-1105.

17. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7132-7141. https://doi.org/10.1109/CVPR.2018.00745. DOI: https://doi.org/10.1109/CVPR.2018.00745

18. Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., & Glocker, B. (2017). Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation. Medical Image Analysis, 36, 61-78. https://doi.org/10.1016/j.media.2016.10.004. DOI: https://doi.org/10.1016/j.media.2016.10.004

19. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 10012-10022. https://doi.org/10.1109/ICCV48922.2021.00986 DOI: https://doi.org/10.1109/ICCV48922.2021.00986

20. Prastawa, M., Bullitt, E., Ho, S., & Gerig, G. (2004). A brain tumor segmentation framework based on outlier detection. Medical Image Analysis, 8(3), 275-283. https://doi.org/10.1016/j.media.2004.06.007 DOI: https://doi.org/10.1016/j.media.2004.06.007

21. Salvado, M., Carreira, J., & Blum, H. (2020). Learning Visual Representation with Sparse Annotations. In Computer Vision – ECCV 2020, Lecture Notes in Computer Science, 12349, 492-508. https://doi.org/10.1007/978-3-030-58548-8_29 DOI: https://doi.org/10.1007/978-3-030-58548-8_29

22. Toga, A. W., & Thompson, P. M. (2001). The role of image registration in brain mapping. Image and Vision Computing, 19(1-2), 3-24. https://doi.org/10.1016/S0262-8856(00)00055-X DOI: https://doi.org/10.1016/S0262-8856(00)00055-X

23. Wang, G., Li, W., Ourselin, S., & Vercauteren, T. (2019). Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Lecture Notes in Computer Science, 11384, 178-190. https://doi.org/10.1007/978-3-030-11726-9_16 DOI: https://doi.org/10.1007/978-3-319-75238-9_16

24. Warfield, S. K., Kaus, M., Jolesz, F. A., & Kikinis, R. (2000). Adaptive, Template Moderated, Spatially Varying Statistical Classification. Medical Image Analysis, 4(1), 43-55. https://doi.org/10.1016/S1361-8415(00)00003-7 DOI: https://doi.org/10.1016/S1361-8415(00)00003-7

25. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Transactions on Medical Imaging, 20(1), 45-57. https://doi.org/10.1109/42.906424 DOI: https://doi.org/10.1109/42.906424

26. Zhang, J., Xie, Y., Xia, Y., & Shen, C. (2022). TransBTS: Multimodal Brain Tumor Segmentation Using Transformer. In Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Lecture Notes in Computer Science, 13431, 105-115. https://doi.org/10.1007/978-3-031-16431-6_11 DOI: https://doi.org/10.1007/978-3-031-16431-6_11

27. Zhou, S. K., Greenspan, H., Davatzikos, C., Duncan, J. S., van Ginneken, B., Madabhushi, A., Prince, J. L., Rueckert, D., & Summers, R. M. (2021). A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE, 109(5), 820-838. https://doi.org/10.1109/JPROC.2021.3054390. DOI: https://doi.org/10.1109/JPROC.2021.3054390

28. Zhang, Z., Liu, Q., & Wang, Y. (2018). Road Extraction by Deep Residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749-753. https://doi.org/10.1109/LGRS.2018.2802944 DOI: https://doi.org/10.1109/LGRS.2018.2802944

29. Alom, M. Z., Hasan, M., Yakopcic, C., Taha, T. M., & Asari, V. K. (2018). Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation. Computer Vision and Pattern Recognition. arXiv preprint arXiv:1802.06955. DOI: https://doi.org/10.1109/NAECON.2018.8556686

30. Chen, Y., Wang, G., Li, M., & Zhou, J. (2019). Dual Path U-Net for Brain Tumor Segmentation with Adaptive Feature Fusion. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, vol 11765, pp. 157-165. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_18 DOI: https://doi.org/10.1007/978-3-030-32245-8_18

31. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C. W., & Heng, P. A. (2020). H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Transactions on Medical Imaging, 39(12), 2982-2993. https://doi.org/10.1109/TMI.2020.2996645 DOI: https://doi.org/10.1109/TMI.2020.2996645

32. Wang, W., Chen, C., Ding, M., Li, J., Yu, H., & Zha, S. (2021). Dense Transformer Network for Brain Tumor Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, vol 12902, pp. 178-188. https://doi.org/10.1007/978-3-030-87196-3_17. DOI: https://doi.org/10.1007/978-3-030-87196-3_17

33. Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network with Spatial Attention for Brain Tumor Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science, vol 10435, pp. 261-269. https://doi.org/10.1007/978-3-319-66179-7_30. DOI: https://doi.org/10.1109/CVPR.2017.660

34. Alom, M. Z., Yakopcic, C., Hasan, M., Taha, T. M., & Asari, V. K. (2019). Recurrent residual U-Net for medical image segmentation. Journal of Medical Imaging, 6(1), 014006. https://doi.org/10.1117/1.JMI.6.1.014006 DOI: https://doi.org/10.1117/1.JMI.6.1.014006

35. Alshraiedeh, F., Hanna, S., & Alazaidah, R. (2015). An approach to extend WSDL-based data types specification to enhance web services understandability. International Journal of Advanced Computer Science and Applications, 6(3), 88-98 DOI: https://doi.org/10.14569/IJACSA.2015.060314

36. Alazaidah, R., Samara, G., Aljaidi, M., Haj Qasem, M., Alsarhan, A., & Alshammari, M. (2023). Potential of Machine Learning for Predicting Sleep Disorders: A Comprehensive Analysis of Regression and Classification Models. Diagnostics, 14(1), 27. DOI: https://doi.org/10.3390/diagnostics14010027

37. Alazaidah, R., Ahmad, F. K., & Mohsin, M. (2020). Multi label ranking based on positive pairwise correlations among labels. The International Arab Journal of Information Technology, 17(4), 440-449.‏ DOI: https://doi.org/10.34028/iajit/17/4/2

38. Khafajeh, H. (2024). Cyberbullying Detection in Social Networks Using Deep Learning. International Arab Journal of Information Technology (IAJIT), 21(6).‏‏ DOI: https://doi.org/10.34028/iajit/21/6/9

39. Owida, H. A., De Las Heras Ruiz, T., Dhillon, A., Yang, Y., & Kuiper, N. J. (2017). Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production. Histochemistry and cell biology, 148, 625-638.‏ DOI: https://doi.org/10.1007/s00418-017-1602-4

40. Owida, H. A., Turab, N. M., & Al-Nabulsi, J. (2023). Carbon nanomaterials advancements for biomedical applications. Bulletin of Electrical Engineering and Informatics, 12(2), 891-901.‏ DOI: https://doi.org/10.11591/eei.v12i2.4310

41. Abu Owida, H. (2022). Developments and clinical applications of biomimetic tissue regeneration using 3D bioprinting technique. Applied Bionics and Biomechanics, 2022(1), 2260216.‏ DOI: https://doi.org/10.1155/2022/2260216

42. Abuowaida, S. F. A., Chan, H. Y., Alshdaifat, N. F. F., & Abualigah, L. (2021). A novel instance segmentation algorithm based on improved deep learning algorithm for multi-object images. Jordanian Journal of Computers and Information Technology (JJCIT), 7(01).‏ DOI: https://doi.org/10.5455/jjcit.71-1603701313

43. Abuowaida, S. F., & Chan, H. Y. (2020). Improved deep learning architecture for depth estimation from single image. Jordanian Journal of Computers and Information Technology, 6(4). DOI: https://doi.org/10.5455/jjcit.71-1593368945

44. Al-Momani, A., Al-Refai, M.N., Abuowaida, S., Arabiat, M., Alshdaifat, N., Rahman, M.N.A. The effect of technological context on smart home adoption in Jordan. Indonesian Journal of Electrical Engineering and Computer Science, 33(2), 1186-1195 DOI: https://doi.org/10.11591/ijeecs.v33.i2.pp1186-1195

45. ARABIAT, M., ABUOWAIDA, S., AL-MOMANI, A. D. A. I., ALSHDAIFAT, N., & CHAN, H. Y. (2024). DEPTH ESTIMATION METHOD BASED ON RESIDUAL NETWORKS AND SE-NET MODEL. Journal of Theoretical and Applied Information Technology, 102(3).‏

46. Tarawneh, O., Saber, Q., Almaghthawi, A., Owida, H. A., Issa, A., Alshdaifat, N., ... & Arabiat, M. (2024). The Effect of Pre-processing on a Convolutional Neural Network Model for Dorsal Hand Vein Recognition. International Journal of Advanced Computer Science & Applications, 15(3).‏ DOI: https://doi.org/10.14569/IJACSA.2024.01503126

47. Turki, H. M., Al Daoud, E., Samara, G., Alazaidah, R., Qasem, M. H., Aljaidi, M., ... & Alshdaifat, N. (2025). Arabic fake news detection using hybrid contextual features. International Journal of Electrical & Computer Engineering (2088-8708), 15(1).‏ DOI: https://doi.org/10.11591/ijece.v15i1.pp836-845

48. Alshdaifat, N., Osman, M. A., & Talib, A. Z. (2022). An improved multi-object instance segmentation based on deep learning. Kuwait Journal of Science, 49(2).‏

49. Al-Batah, M. S., Alzboon, M. S., & Alazaidah, R. (2023). Intelligent Heart Disease Prediction System with Applications in Jordanian Hospitals. International Journal of Advanced Computer Science and Applications, 14(9).‏ DOI: https://doi.org/10.14569/IJACSA.2023.0140954

50. Samara, G., Aljaidi, M., Alazaidah, R., Qasem, M. H., Hassan, M., Al-Milli, N., ... & Kanan, M. (2023). A comprehensive review of machine learning-based intrusion detection techniques for IoT networks. Artificial Intelligence, Internet of Things, and Society 5.0, 465-473.‏ DOI: https://doi.org/10.1007/978-3-031-43300-9_38

51. Tarek, Z., Alhussan, A. A., Khafaga, D. S., El-Kenawy, E. S. M., & Elshewey, A. M. (2025). A snake optimization algorithm-based feature selection framework for rapid detection of cardiovascular disease in its early stages. Biomedical Signal Processing and Control, 102, 107417.‏ DOI: https://doi.org/10.1016/j.bspc.2024.107417

52. Maiti, B., Biswas, S., Ezugwu, A. E. S., Bera, U. K., Alzahrani, A. I., Alblehai, F., & Abualigah, L. (2025). Enhanced crayfish optimization algorithm with differential evolution’s mutation and crossover strategies for global optimization and engineering applications. Artificial Intelligence Review, 58(3), 69.‏ DOI: https://doi.org/10.1007/s10462-024-11069-7

53. Al-Na'amneh, Q., Dhifallah, W., Hazaymih, R., Almaiah, M. A., Alsheyab, A., Alshinwan, M., & Qadoumi, B. (2025). DIS Flooding Attack Impact in RPL-Based 6LowPAN Network. In Machine Intelligence Applications in Cyber-Risk Management (pp. 69-84). IGI Global Scientific Publishing.‏ DOI: https://doi.org/10.4018/979-8-3693-7540-2.ch004

54. Al-Batah MS, Al-Eiadeh MR. An improved binary crow-JAYA optimisation system with various evolution operators, such as mutation for finding the max clique in the dense graph. Int J Comput Sci Math. 2024;19(4):327-38. DOI: https://doi.org/10.1504/IJCSM.2024.139088

55. Al-Batah MS, Al-Eiadeh MR. An improved discreet Jaya optimisation algorithm with mutation operator and opposition-based learning to solve the 0-1 knapsack problem. Int J Math Oper Res. 2023;26(2):143-69. DOI: https://doi.org/10.1504/IJMOR.2023.134491

56. Ali, S., Alshinwan, M., Khashan, O. A., Hijjawi, M., Altawil, A., Al-Na'amneh, Q., ... & Abualigah, L. (2025). Intrusion Detection for Wireless Sensor Networks Using Parrot Algorithm. In Machine Intelligence Applications in Cyber-Risk Management (pp. 345-366). IGI Global Scientific Publishing.‏ DOI: https://doi.org/10.4018/979-8-3693-7540-2.ch015

57. Al-Batah MS. Integrating the principal component analysis with partial decision tree in microarray gene data. IJCSNS Int J Comput Sci Netw Secur. 2019;19(3):24-29.

58. Al-Batah MS. Modified recursive least squares algorithm to train the hybrid multilayered perceptron (HMLP) network. Appl Soft Comput. 2010;10(1):236-44. DOI: https://doi.org/10.1016/j.asoc.2009.06.018

59. AlSokkar, A. A., Law, E. L. C., AlMajali, D. A., Al-Gasawneh, J. A., & Alshinwan, M. (2024). An Indexed Approach for Expectation-Confirmation Theory: A Trust-based model. Electronic Markets, 34(1), 12.‏ DOI: https://doi.org/10.1007/s12525-024-00694-3

60. Al-Batah MS. Testing the probability of heart disease using classification and regression tree model. Annu Res Rev Biol. 2014;4(11):1713-25. DOI: https://doi.org/10.9734/ARRB/2014/7786

61. Al-Batah MS. Ranked features selection with MSBRG algorithm and rules classifiers for cervical cancer. Int J Online Biomed Eng. 2019;15(12):4. DOI: https://doi.org/10.3991/ijoe.v15i12.10803

62. Abatal, A., Mzili, M., Benlalia, Z., Khallouki, H., Mzili, T., Billah, M. E. K., & Abualigah, L. (2025). Hybrid long short-term memory and decision tree model for optimizing patient volume predictions in emergency departments. International Journal of Electrical & Computer Engineering (2088-8708), 15(1).‏ DOI: https://doi.org/10.11591/ijece.v15i1.pp669-676

Downloads

Published

2025-02-26

Issue

Section

Original

How to Cite

1.
Abuowaida S, Alnsour Y, Salah Z, Alazaidah R, Al-Batah MS, Alzboon MS, et al. Hybrid Ensemble Architecture for Brain Tumor Segmentation Using EfficientNetB4-MobileNetV3 with Multi-Path Decoders. Data and Metadata [Internet]. 2025 Feb. 26 [cited 2025 Nov. 30];4:374. Available from: https://dm.ageditor.ar/index.php/dm/article/view/374