Bibliometric analysis of the applicability of artificial intelligence in the integrated management of medical waste

Authors

DOI:

https://doi.org/10.56294/dm2024.375

Keywords:

MEDICAL WASTE, ARTIFICIAL INTELLIGENCES, BIBLIOMETRIC ANÁLISIS, ENVIRONMENTAL MANAGEMENT

Abstract

The integrated management of medical waste (MD) is a crucial challenge for public health and the environment, aggravated in recent times by population growth and the emergence of pandemics. In this context, the implementation of innovative technologies such as Artificial Intelligence (AI) presents itself as a promising solution. These technological tools can facilitate the identification, classification and tracking of DMs, thus optimizing their collection, treatment and final disposal in an efficient and sustainable manner. For this purpose, it was established to analyze the scientific production related to the integrated management of medical waste and the applicability of Artificial Intelligence. The Scopus database was used during the period 2017 - 2024 based on the PRISMA 2020 methodology. The behavior of the studies presented 9 nodes representing 116 publications. For the co-occurrence of keywords, five clusters and 56 selected keywords were found, which corroborates the importance of the study. However, the application of emerging technologies in combination with comprehensive approaches can significantly contribute to improve DM management, from an adaptive, resilient, and inclusive approach.

References

1. Moldovan F, Moldovan L. Sustainable Waste Management in Orthopedic Healthcare Services. Sustainability. enero de 2024;16(12):5214.

2. Banjar H, Alrowithi R, Alhadrami S, Magrabi E, Munshi R, Alrige M. An Intelligent System for Proper Management and Disposal of Unused and Expired Medications. Int J Environ Res Public Health. enero de 2022;19(5):2875.

3. Hossain MdS, Santhanam A, Nik Norulaini NA, Omar AKM. Clinical solid waste management practices and its impact on human health and environment – A review. Waste Manag. 1 de abril de 2011;31(4):754-66.

4. Jiménez-Lacarra V, Martínez-Cámara E, Santamaría-Peña J, Jiménez-Macías E, Blanco-Fernández J. Healthcare in the Time of COVID-19: An Environmental Perspective on the Pandemic’s Impact on Hospitals. Appl Sci. enero de 2024;14(10):4007.

5. Hadipour M, Saffarian S, Shafiee M, Tahmasebi S. Measurement and management of hospital waste in southern Iran: a case study. J Mater Cycles Waste Manag. 1 de octubre de 2014;16(4):747-52.

6. Bhardwaj A, Kishore S, Pandey DK. Artificial Intelligence in Biological Sciences. Life. septiembre de 2022;12(9):1430.

7. Tirkolaee EB, Torkayesh AE. A Cluster-based Stratified Hybrid Decision Support Model under Uncertainty: Sustainable Healthcare Landfill Location Selection. Appl Intell. 1 de septiembre de 2022;52(12):13614-33.

8. Mehran MT, Raza Naqvi S, Ali Haider M, Saeed M, Shahbaz M, Al-Ansari T. Global plastic waste management strategies (Technical and behavioral) during and after COVID-19 pandemic for cleaner global urban life. Energy Sources Part Recovery Util Environ Eff. 2021;

9. Rahman MM, Bodrud-Doza M, Griffiths MD, Mamun MA. Biomedical waste amid COVID-19: perspectives from Bangladesh. Lancet Glob Health. 1 de octubre de 2020;8(10):e1262.

10. Saxena P, Pradhan IP, Kumar D. Redefining bio medical waste management during COVID- 19 in india: A way forward. Mater Today Proc. 1 de enero de 2022;60:849-58.

11. Miamiliotis AS, Talias MA. Healthcare Workers’ Knowledge about the Segregation Process of Infectious Medical Waste Management in a Hospital. Healthcare. enero de 2024;12(1):94.

12. Ahlaqqach M, Benhra J, Mouatassim S. Optimisation des tournées de collecte et de desserte des déchets médicaux transitant par un entrepôt commun. Logistique Manag. 2 de enero de 2017;25(1):25-33.

13. Goodarzian F, Ghasemi P, Gunasekaran A, Labib A. A fuzzy sustainable model for COVID-19 medical waste supply chain network. Fuzzy Optim Decis Mak. 1 de marzo de 2024;23(1):93-127.

14. Daoud AO, Elattar H, Abdelatif G, Morsy KM, Peters RW, Mostafa MK. Implications of the COVID-19 Pandemic on the Management of Municipal Solid Waste and Medical Waste: A Comparative Review of Selected Countries. Biomass. junio de 2024;4(2):555-73.

15. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol. 1 de junio de 2021;134:178-89.

16. Reis y Melão - 2023 - Digital transformation A meta-review and guidelin.pdf [Internet]. [citado 26 de junio de 2024]. Disponible en: https://www.cell.com/heliyon/pdf/S2405-8440(23)00041-5.pdf

17. Jing Y, Wang C, Chen Y, Wang H, Yu T, Shadiev R. Bibliometric mapping techniques in educational technology research: A systematic literature review. Educ Inf Technol. 1 de junio de 2024;29(8):9283-311.

18. Bueno IM, Teixeira JESL. Waste Plastic in Asphalt Mixtures via the Dry Method: A Bibliometric Analysis. Sustainability. enero de 2024;16(11):4675.

19. Wawale SG, Shabaz M, Mehbodniya A, Soni M, Deb N, Elashiri MA, et al. Biomedical Waste Management Using IoT Tracked and Fuzzy Classified Integrated Technique. Hum-Centric Comput Inf Sci. 15 de julio de 2022;12(0):401-14.

20. Mohamed NH, Khan S, Jagtap S. Modernizing Medical Waste Management: Unleashing the Power of the Internet of Things (IoT). Sustainability. enero de 2023;15(13):9909.

21. Chauhan A, Jakhar SK, Chauhan C. The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal. J Clean Prod. 10 de enero de 2021;279:123854.

22. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 4 de abril de 2018;15(141):20170387.

23. Andeobu L, Wibowo S, Grandhi S. Environmental and Health Consequences of E-Waste Dumping and Recycling Carried out by Selected Countries in Asia and Latin America. Sustainability. enero de 2023;15(13):10405.

24. Montesinos L, Checa Rifá P, Rifá Fabregat M, Maldonado-Romo J, Capacci S, Maccaro A, et al. Sustainability across the Medical Device Lifecycle: A Scoping Review. Sustainability. enero de 2024;16(4):1433.

25. Jemioło P, Storman D, Orzechowski P. Artificial Intelligence for COVID-19 Detection in Medical Imaging—Diagnostic Measures and Wasting—A Systematic Umbrella Review. J Clin Med. enero de 2022;11(7):2054.

26. Chen T, Madanian S, Airehrour D, Cherrington M. Machine learning methods for hospital readmission prediction: systematic analysis of literature. J Reliab Intell Environ. 1 de marzo de 2022;8(1):49-66.

27. Yang T, Du Y, Sun M, Meng J, Li Y. Risk Management for Whole-Process Safe Disposal of Medical Waste: Progress and Challenges. Risk Manag Healthc Policy. junio de 2024;Volume 17:1503-22.

28. Zhou J, Shi T, Qian Q, He C, Ren J. Protocol for the design and accelerated optimization of a waste-to-energy system using AI tools. STAR Protoc. 15 de diciembre de 2023;4(4):102685.

29. Ortega-Calvo AS, Morcillo-Jimenez R, Fernandez-Basso C, Gutiérrez-Batista K, Vila MA, Martin-Bautista MJ. AIMDP: An Artificial Intelligence Modern Data Platform. Use case for Spanish national health service data silo. Future Gener Comput Syst. 1 de junio de 2023;143:248-64.

30. Allahham M, Sharabati AA, Hatamlah H, Ahmad AYB, Sabra S, Daoud MK. Big Data Analytics and AI for Green Supply Chain Integration and Sustainability in Hospitals. WSEAS Trans Environ Dev. 2023;19:1218-30.

31. Boudanga Z, benhadou S, Medromi H. An innovative medical waste management system in a smart city using XAI and vehicle routing optimization. F1000Research. 2023;12.

32. Bamakan SMH, Malekinejad P, Ziaeian M. Towards blockchain-based hospital waste management systems; applications and future trends. J Clean Prod. 2022;349.

33. Wang C, Ma Y, Zhong G. IOT Monitoring System of Medical Waste Based on Artificial Intelligence. En 2021. p. 139-43.

34. Golbaz S, Nabizadeh R, Sajadi HS. Comparative study of predicting hospital solid waste generation using multiple linear regression and artificial intelligence. J Environ Health Sci Eng. 2019;17(1):41-51.

35. Li J, Peng J, Gao H, Zhao X. A study of medical waste management based on the internet of things technology and ecological perspective. Fresenius Environ Bull. 2020;29(10):9226-31.

Downloads

Published

2024-08-18

How to Cite

1.
Cajamarca Carrazco D, Tobar-Ruiz MG, Almeida López DM, Cevallos Hermida CE, Llangarí Arellano VM, Zavala Tobar MA, et al. Bibliometric analysis of the applicability of artificial intelligence in the integrated management of medical waste. Data and Metadata [Internet]. 2024 Aug. 18 [cited 2024 Sep. 16];3:.375. Available from: https://dm.ageditor.ar/index.php/dm/article/view/375