Optimizing a Novel Tracking System for Living Beings and Objects through Advanced Mathematical Modeling and Graph Theory

Authors

DOI:

https://doi.org/10.56294/dm2024.406

Keywords:

Tracking System, Tracking, Graph Learning, Hypergraph

Abstract

This study extends the formulation of a tracking system for both live items and living persons, and gives a thorough theoretical framework for an advanced tracking system. A large number of tracking systems in use today were created inside certain frameworks and designed to monitor in either infinite or restricted spatial contexts. The latter typically makes use of specialized technological instruments designed with tracking objects or living things in mind. Our contribution to this topic is the formulation of a system theory that both formulates and innovates the challenge of monitoring objects and living things. Graphical modeling is widely used in tracking, which is interesting because it makes it easier to create precise relationships between the objects that need to be tracked and other parts of the system. But our study argues that the best way to achieve a high-performing, contextually relevant, and flexible system in a range of scenarios is still to build a tracking system around graphs, both theoretically and practically. We provide a unique tracking method to further the discipline, based on the ideas of hypergraphs and graph learning. This method carefully examines the order between various linkages inside the system, allowing the system to fully use both direct and indirect relations. The way we formulate tracking is as a complex search problem on graphs and hypergraphs. In this case, the system's components—living things or objects—are represented by vertices, and the kinds of relationships that exist between them are indicated by edges. We present a governing law that facilitates different processing tasks, manages shared data across system parts, and defines the connections between vertices. Additionally, we provide illustrated examples covering single and multi-context tracking scenarios to support our work. These illustrations highlight how, in comparison to current tracking technologies, the suggested approach performs better theoretically. In addition to adding to the theoretical conversation, this discovery has potential applicability in a variety of tracking contexts

References

1.Hallinan, Maureen T.” Tracking: From theory to practice.” Sociol- ogy of education 67.2 (1994): 79-84.

2.S. Pellegrini, A. Ess, and L. Van Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. In Eu- ropean Conference on Computer Vision, pages 452–465. Springer, 2010.

3.S. Pellegrini, A. Ess, and L. Van Gool. Improving data association by joint modeling of pedestrian trajectories and groupings. In Eu- ropean Conference on Computer Vision, pages 452–465. Springer, 2010. DOI: https://doi.org/10.1007/978-3-642-15549-9_33

4.W. Hu, T. Tan, L. Wang, S. Maybank, A survey on visual surveil- lance of object motion and behaviors, IEEE Trans. Syst. Man Cy- bern., Part C, Appl. Rev. 34 (3) (2004) 334–352. DOI: https://doi.org/10.1109/TSMCC.2004.829274

5.Bretto, Alain.” Hypergraph theory.” An introduction. Mathemati- cal Engineering. Cham: Springer (2013).

6.Dawei Du, Honggang Qi, Longyin Wen, Qi Tian, Qingming Huang, and Siwei Lyu. 2017. Geometric hypergraph learning for visual tracking. IEEE TC 47, 12 (2017), 4182–4195. DOI: https://doi.org/10.1109/TCYB.2016.2626275

7.Tutte, William Thomas, and William Thomas Tutte. Graph theory. Vol. 21. Cambridge university press, 2001.

8.West, Douglas Brent. Introduction to graph theory. Vol. 2. Upper Saddle River: Prentice hall, 2001.

9.Gould, Ronald. Graph theory. Courier Corporation, 2012.

10.Bollob´as, B´ela. Modern graph theory. Vol. 184. Springer Science & Business Media, 1998.

11.Bondy, John Adrian, and Uppaluri Siva Ramachandra Murty. Graph theory with applications. Vol. 290. London: Macmillan, 1976. DOI: https://doi.org/10.1007/978-1-349-03521-2

12.Bretto, Alain.” Hypergraph theory.” An introduction. Mathemati- cal Engineering. Cham: Springer (2013). DOI: https://doi.org/10.1007/978-3-319-00080-0

13.Hopkins, Brian, and Robin J. Wilson.” The truth about K¨onigsberg.” The College Mathematics Journal 35.3 (2004): 198- 207. DOI: https://doi.org/10.1080/07468342.2004.11922073

14.Hallinan, Maureen T.” Tracking: From theory to practice.” Sociol- ogy of education 67.2 (1994): 79-84. DOI: https://doi.org/10.2307/2112697

15.H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Multi-commodity network flow for tracking multiple people,” IEEE TPAMI, vol. 36, no. 8, pp. 1614–1627, 2014.

16.D. Reid et al., “An algorithm for tracking multiple targets,” IEEE transactions on Automatic Control, vol. 24, no. 6, pp. 843–854, 1979. DOI: https://doi.org/10.1109/TAC.1979.1102177

17.G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part- based multiple-person tracking with partial occlusion handling,” in Proc. CVPR. IEEE, 2012, pp. 1815–1821.

18.Y. Tian, A. Dehghan, and M. Shah, “On detection, data association and segmentation for multi-target tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2018.

19.Idir Filali, Mohand Sa¨ıd Allili, and Nadjia Benblidia. 2016. Multi- scale salient object detection using graph ranking and global–local saliency refinement. Elsevier Signal Proc. Image 47 (2016), 380–401. DOI: https://doi.org/10.1016/j.image.2016.07.007

20.Meng Li and Howard Leung. 2016. Multiview skeletal interaction recognition using active joint interaction graph. IEEE TM 18, 11 (2016), 2293–2302. DOI: https://doi.org/10.1109/TMM.2016.2614228

21.H. K. Meena, K. K. Sharma, and S. D. Joshi. 2017. Improved facial expression recognition using graph sig. pro. IET EL 53, 11 (2017), 718–720. DOI: https://doi.org/10.1049/el.2017.0420

22.Dawei Du, Honggang Qi, Wenbo Li, Longyin Wen, Qingming Huang, and Siwei Lyu. 2016. Online deformable object tracking based on structure-aware hyper-graph. TIP 25, 8 (2016), 3572–3584. DOI: https://doi.org/10.1109/TIP.2016.2570556

23.H. Nam, M. Baek, and B. Han. 2016. Modeling and propagating CNNs in a tree structure for visual tracking. CoRR. Retrieved from abs/1608.07242.

24.Tao Wang and Haibin Ling. 2018. Gracker: A graph-based planar object tracker. IEEE TPAMI 40, 6 (2018), 1494–1501. DOI: https://doi.org/10.1109/TPAMI.2017.2716350

25.D. Yeo, J. Son, B. Han, and J. H. Han. 2017. Superpixel-based tracking-by-segmentation using Markov chains. In Proceedings of the CVPR. IEEE, 511–520. DOI: https://doi.org/10.1109/CVPR.2017.62

26.K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe. A boosted particle filter: Multitarget detection and tracking. In Computer Vision-ECCV 2004, pages 28–39. Springer, 2004. DOI: https://doi.org/10.1007/978-3-540-24670-1_3

27.C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical association of detection responses. In Computer Vi- sion–ECCV 2008, pages 788–801. Springer, 2008. DOI: https://doi.org/10.1007/978-3-540-88688-4_58

28.Y. Xiang, A. Alahi, and S. Savarese. Learning to track: On- line multi-object tracking by decision making. In Proceedings of the IEEE International Conference on Computer Vision, pages 4705–4713, 2015. DOI: https://doi.org/10.1109/ICCV.2015.534

29.M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. Robust tracking-by-detection using a detector confidence particle filter. In Computer Vision, 2009 IEEE 12th International Conference on, pages 1515–1522. IEEE, 2009. DOI: https://doi.org/10.1109/ICCV.2009.5459278

30.A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese. Learning so- cial etiquette: Human trajectory understanding in crowded scenes. In European Conference on Computer Vision, pages 549–565. Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-46484-8_33

31.A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 961–971, 2016. DOI: https://doi.org/10.1109/CVPR.2016.110

32.S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll never walk alone: Modeling social behavior for multi-target tracking. In Computer Vision, 2009 IEEE 12th International Conference on, pages 261–268. IEEE, 2009. DOI: https://doi.org/10.1109/ICCV.2009.5459260

33.K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg. Who are you with and where are you going? In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1345–1352. IEEE, 2011. DOI: https://doi.org/10.1109/CVPR.2011.5995468

34.W. Choi and S. Savarese. Multiple target tracking in world co- ordinate with single, minimally calibrated camera. In Computer Vision–ECCV 2010, pages 553–567. Springer, 2010. DOI: https://doi.org/10.1007/978-3-642-15561-1_40

35.P. Scovanner and M. F. Tappen. Learning pedestrian dynamics from the real world. In Computer Vision, 2009 IEEE 12th Inter- national Conference on, pages 381–388. IEEE, 2009. DOI: https://doi.org/10.1109/ICCV.2009.5459224

36.S. Ali and M. Shah. Floor fields for tracking in high density crowd scenes. In Computer Vision–ECCV 2008, pages 1–14. Springer, 2008. DOI: https://doi.org/10.1007/978-3-540-88688-4_1

37.Z. Wu, A. Thangali, S. Sclaroff, and M. Betke. Coupling detection and data association for multiple object tracking. In Computer Vi- sion and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1948–1955. IEEE, 2012.

38.S. Oron, A. Bar-Hillel, and S. Avidan. Real-time trackingwith-detection for coping with viewpoint change. Machine Vision and Applications, 26(4):507–518, 2015. DOI: https://doi.org/10.1007/s00138-015-0676-z

39.S. Tang, B. Andres, M. Andriluka, and B. Schiele. Multiperson tracking by multicut and deep matching. In European Conference on Computer Vision, pages 100–111. Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-48881-3_8

40.N. Le, A. Heili, and J.-M. Odobez. Long-term time-sensitive costs for crf-based tracking by detection. In European Conference on Computer Vision, pages 43–51. Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-48881-3_4

41.H. Izadinia, V. Ramakrishna, K. M. Kitani, and D. Huber. Multi-pose multi-target tracking for activity understanding. In Applica- tions of Computer Vision (WACV), 2013 IEEE Workshop on, pages 385–390. IEEE, 2013. DOI: https://doi.org/10.1109/WACV.2013.6475044

42.A. R. Zamir, A. Dehghan, and M. Shah. Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs. In Computer Vision–ECCV 2012, pages 343– 356. Springer, 2012.

43.B. Y. S. Khanloo, F. Stefanus, M. Ranjbar, Z.-N. Li, N. Saunier, T. Sayed, and G. Mori. A large margin framework for single cam- era offline tracking with hybrid cues. Computer Vision and Image Understanding, 116(6):676– 689, 2012. DOI: https://doi.org/10.1016/j.cviu.2012.01.004

44.S. Hong and B. Han. Visual tracking by sampling treestructured graphical models. In European Conference on Computer Vision, pages 1–16. Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-10590-1_1

45.H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4293–4302, 2016. DOI: https://doi.org/10.1109/CVPR.2016.465

46.D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression networks. In European Conference on Com- puter Vision, pages 749–765. Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-46448-0_45

47.L. Leal-Taixe, C. Canton-Ferrer, and K. Schindler. Learning ´ by tracking: Siamese cnn for robust target association. arXiv preprint arXiv:1604.07866, 2016. DOI: https://doi.org/10.1109/CVPRW.2016.59

48.M. Zhai, M. J. Roshtkhari, and G. Mori. Deep learning of appearance models for online object tracking. arXiv preprint arXiv:1607.02568, 2016.

49.B. Yang and R. Nevatia. Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1918–1925. IEEE, 2012. DOI: https://doi.org/10.1109/CVPR.2012.6247892

50.B. Yang and R. Nevatia. An online learned crf model for multi-target tracking. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2034–2041. IEEE, 2012. DOI: https://doi.org/10.1109/CVPR.2012.6247907

51. C. Dicle, O. I. Camps, and M. Sznaier. The way they move: Tracking multiple targets with similar appearance. In Proceedings of the IEEE International Conference on Computer Vision, pages 2304–2311, 2013. DOI: https://doi.org/10.1109/ICCV.2013.286

52.D. Helbing and P. Molnar. Social force model for pedestrian dy- namics. Physical review E, 51(5):4282, 1995. DOI: https://doi.org/10.1103/PhysRevE.51.4282

53. Mgalaa, S., Mabrouki, J., Elouardi, M., El Azzouzi, L., Moufti, A., El Hajjaji, S., ... & El Belghiti, M. A.. Study and evaluation of the degradation of procion blue dye by the ozonation method: parametric and isothermal study. Nanotechnology for Environmental Engineering, 7(3), 691-697. 2022. DOI: https://doi.org/10.1007/s41204-022-00262-0

54.L. Wen, Z. Lei, S. Lyu, S. Z. Li, and M.-H. Yang. Exploiting hier-archical dense structures on hypergraphs for multi-object tracking. IEEE transactions on pattern analysis and machine intelligence, 38(10):1983–1996, 2016. DOI: https://doi.org/10.1109/TPAMI.2015.2509979

55.B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin, and L.-Q. Xu. Crowd analysis: a survey. Machine Vision and Applications, 19(5-6):345–357, 2008. DOI: https://doi.org/10.1007/s00138-008-0132-4

56.F. Solera, S. Calderara, E. Ristani, C. Tomasi, and R. Cucchiara. Tracking social groups within and across cameras. IEEE Transac- tions on Circuits and Systems for Video Technology.

57.X. Zhao, D. Gong, and G. Medioni. Tracking using motion patterns for very crowded scenes. In Computer Vision–ECCV 2012, pages 315–328. Springer, 2012. DOI: https://doi.org/10.1007/978-3-642-33709-3_23

58.P. Mordohai and G. Medioni. Dimensionality estimation, manifold learning and function approximation using tensor voting. Journal of Machine Learning Research, 11(Jan):411–450, 2010.

59.L. Kratz and K. Nishino. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 693–700. IEEE, 2010. DOI: https://doi.org/10.1109/CVPR.2010.5540149

60.L. Kratz and K. Nishino. Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes. IEEE transactions on pattern analysis and machine intelligence, 34(5):987–1002, 2012. DOI: https://doi.org/10.1109/TPAMI.2011.173

61.M. Rodriguez, S. Ali, and T. Kanade. Tracking in unstructured crowded scenes. In 2009 IEEE 12th International Conference on Computer Vision, pages 1389–1396. IEEE, 2009. DOI: https://doi.org/10.1109/ICCV.2009.5459301

62. El Alouani, M., Aouan, B., Rachdi, Y., Alehyen, S., El Herradi, E. H., Saufi, H., ... & Barka, N. Porous geopolymers as innovative adsorbents for the removal of organic and inorganic hazardous substances: a mini-review. International Journal of Environmental Analytical Chemistry, 1-13. 2022. DOI: https://doi.org/10.1080/03067319.2022.2115891

63.X. Wang, Intelligent multi-camera video surveillance: a review, Pattern Recognit. Lett. 34 (1) (2013) 3–19. DOI: https://doi.org/10.1016/j.patrec.2012.07.005

64.J. Candamo, M. Shreve, D.B. Goldgof, D.B. Sapper, R. Kas- turi, Understanding transit scenes: a survey on human behavior- recognition algorithms, IEEE Trans. Intell. Transp. Syst. 11 (1) (2010) 206–224. DOI: https://doi.org/10.1109/TITS.2009.2030963

65. Benchrifa, M., Elouardi, M., Fattah, G., Mabrouki, J., & Tadili, R. Identification, simulation and modeling of the main power losses of a photovoltaic installation and use of the internet of things to minimize system losses. In Advanced technology for smart environment and energy, 49-60. 2023. DOI: https://doi.org/10.1007/978-3-031-25662-2_4

66.I.S. Kim, H.S. Choi, K.M. Yi, J.Y. Choi, S.G. Kong, Intelligent visual surveillance-a survey, Int. J. Control. Autom. Syst. 8 (5) (2010) 926–939. DOI: https://doi.org/10.1007/s12555-010-0501-4

67.D.A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, D. Ramanan, et al., Computational studies of human motion: part 1, tracking and motion synthesis, Found. Trends Comput. Graph. Vis. 1 (2–3) (2006) 77–254. DOI: https://doi.org/10.1561/0600000005

68.A. Yilmaz, O. Javed, M. Shah, Object tracking: a survey, ACM Comput. Surv. 38 (4) (2006) 13.

69.X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A.V.D. Hengel, A survey of appearance models in visual object tracking, ACM Trans. Intell. Syst. Technol. 4 (4) (2013) 58. DOI: https://doi.org/10.1145/2508037.2508039

70. Mabrouki, J., Azrour, M., Dhiba, D., Farhaoui, Y., & El Hajjaji, S. IoT-based data logger for weather monitoring using arduino-based wireless sensor networks with remote graphical application and alerts. Big Data Mining and Analytics, 4(1), 25-32. 2021. DOI: https://doi.org/10.26599/BDMA.2020.9020018

71.L. Leal-Taix´e, A. Milan, I. Reid, S. Roth, K. Schindler, MOTChal- lenge 2015: towards a benchmark for multi-target tracking, arXiv:1504.01942, http:// arxiv.org/abs/1504.01942.

72. Azrour, M., Mabrouki, J., Guezzaz, A., & Farhaoui, Y. New enhanced authentication protocol for internet of things. Big Data Min Analytics 4 (1): 1–9. 2020. DOI: https://doi.org/10.26599/BDMA.2020.9020010

73.L. Wen, D. Du, S. Li, X. Bian, and S. Lyu, “Learning nonuniform hypergraph for multi object tracking,” arXiv preprint arXiv:1812.03621, 2018.

74.H. Sheng, Y. Zhang, J. Chen, Z. Xiong, and J. Zhang, “Hetero- geneous association graph fusion for target association in multiple object tracking,” IEEE Transactions on Circuits and Systems for Video Technology, 2018. DOI: https://doi.org/10.1109/TCSVT.2018.2882192

75.S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: To- wards Real-Time Object Detection with Region Proposal Net- works,” IEEE TPAMI, vol. 39, no. 6, pp. 1137–1149, 2017. DOI: https://doi.org/10.1109/TPAMI.2016.2577031

76. Azrour, M., Mabrouki, J., Fattah, G., Guezzaz, A., & Aziz, F. Machine learning algorithms for efficient water quality prediction. Modeling Earth Systems and Environment, 8(2), 2793-2801, 2022. DOI: https://doi.org/10.1007/s40808-021-01266-6

77.J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” 2016. DOI: https://doi.org/10.1109/CVPR.2017.690

78. Mabrouki, J., Azrour, M., Fattah, G., Dhiba, D., & El Hajjaji, S. Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco city landfill case. Big Data Mining and Analytics, 4(1), 10-17, 2021. DOI: https://doi.org/10.26599/BDMA.2020.9020017

79.K. Shafique and M. Shah, “A noniterative greedy algorithm for multiframe point correspondence,” IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 1, pp. 51–65, 2005. DOI: https://doi.org/10.1109/TPAMI.2005.1

80. Mabrouki, J., Bencheikh, I., Azoulay, K., Es-Soufy, M., & El Hajjaji, S. Smart monitoring system for the long-term control of aerobic leachate treatment: dumping case Mohammedia (Morocco). In Big Data and Networks Technologies 3 (pp. 220-230). Springer International Publishing, 2020. DOI: https://doi.org/10.1007/978-3-030-23672-4_17

81.G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part- based multiple-person tracking with partial occlusion handling,” in Proc. CVPR. IEEE, 2012, pp. 1815–1821. DOI: https://doi.org/10.1109/CVPR.2012.6247879

82.A. Roshan Zamir, A. Dehghan, and M. Shah, “GMCP-tracker: Global multi-object tracking using generalized minimum clique graphs,” in Lecture Notes in Computer Science, 2012. DOI: https://doi.org/10.1007/978-3-642-33709-3_25

83.B. Wu and R. Nevatia, “Detection and tracking of multiple, par- tially occluded humans by bayesian combination of edgelet based part detectors,” International Journal of Computer Vision, vol. 75, no. 2, pp. 247–266, 2007. DOI: https://doi.org/10.1007/s11263-006-0027-7

84.A. Dehghan, S. Modiri Assari, and M. Shah, “Gmmcp tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking,” in Proc. CVPR, 2015, pp. 4091 4099. DOI: https://doi.org/10.1109/CVPR.2015.7299036

85.H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal greedy algorithms for tracking a variable number of objects,” Proc. CVPR, pp. 1201–1208, 2011. DOI: https://doi.org/10.1109/CVPR.2011.5995604

86.A. A. Butt and R. T. Collins, “Multi-target tracking by lagrangian relaxation to min-cost network flow,” in Proc. CVPR, 2013, pp. 1846–1853. DOI: https://doi.org/10.1109/CVPR.2013.241

87.J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple ob- ¨ ject tracking using k shortest paths optimization,” IEEE TPAMI, vol. 33, no. 9, pp. 1806–1819, 2011. DOI: https://doi.org/10.1109/TPAMI.2011.21

88.H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Multi-commodity network flow for tracking multiple people,” IEEE TPAMI, vol. 36, no. 8, pp. 1614–1627, 2014. DOI: https://doi.org/10.1109/TPAMI.2013.210

89.B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool. Coupled ob- ject detection and tracking from static cameras and moving vehi- cles. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(10):1683–1698, 2008. DOI: https://doi.org/10.1109/TPAMI.2008.170

90.A. Milan, S. Roth, and K. Schindler. Continuous energy minimiza- tion for multitarget tracking. IEEE transactions on pattern analysis and machine intelligence, 36(1):58–72, 2014. DOI: https://doi.org/10.1109/TPAMI.2013.103

91.K. Shafique, M. W. Lee, and N. Haering. A rank constrained con- tinuous formulation of multi-frame multi-target tracking problem. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008. DOI: https://doi.org/10.1109/CVPR.2008.4587577

92.Q. Yu, G. Medioni, and I. Cohen. Multiple target tracking using spatio-temporal markov chain monte carlo data association. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007. DOI: https://doi.org/10.1109/CVPR.2007.382991

93.S. Oron, A. Bar-Hille, and S. Avidan. Extended lucaskanade track- ing. In European Conference on Computer Vision, pages 142–156. Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-10602-1_10

94.Yilmaz, Alper, Omar Javed, and Mubarak Shah.” Object tracking: A survey.” Acm computing surveys (CSUR) 38.4 (2006): 13-es. DOI: https://doi.org/10.1145/1177352.1177355

95.McKenna, Stephen J., et al.” Tracking groups of people.” Computer vision and image understanding 80.1 (2000): 42-56. DOI: https://doi.org/10.1006/cviu.2000.0870

96.Zhou, Xingyi, Vladlen Koltun, and Philipp Kr¨ahenbu¨hl.” Tracking objects as points.” Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV. Cham: Springer International Publishing, 2020.

97. Ariss A, Ennejjai I, Mabrouki J, Lamjid A, Kharmoum N, Ziti S. Tracking System for Living Beings and Objects: Integration of Accessible Mathematical Contributions and Graph Theory in Tracking System Design. Data and Metadata. 2024 Aug 16;3:376-. DOI: https://doi.org/10.56294/dm2024.376

98. Pirela CV, Plata AO, Hernandez GL. Strategic thinking as a potential factor in the growth of companies in the dairy sector. Management (Montevideo) 2024;2:40–40. https://doi.org/10.62486/agma202440. DOI: https://doi.org/10.62486/agma202440

99. Sonal D, Mishra K, Haque A, Uddin F. A Practical Approach to Increase Crop Production Using Wireless Sensor Technology. LatIA 2024;2:10–10. https://doi.org/10.62486/latia202410. DOI: https://doi.org/10.62486/latia202410

100. Vargas OLT, Agredo IAR. Active packaging technology: cassava starch/orange essential oil for antimicrobial food packaging. Multidisciplinar (Montevideo) 2024;2:102–102. https://doi.org/10.62486/agmu2024102. DOI: https://doi.org/10.62486/agmu2024102

101. Velazquez MDCR, Chririnos AAN, Brito AV. Decision-making styles developed by commercial enterprises in the municipality of Barrancas. Management (Montevideo) 2024;2:35–35. https://doi.org/10.62486/agma202435.

102. Ariss A, Ennejjai I, Kharmoum N, Rhalem W, Ziti S, Ezziyyani M. Tracking Methods: Comprehensive Vision and Multiple Approaches. InInternational Conference on Advanced Intelligent Systems for Sustainable Development 2022 May 22 (pp. 40-54). Cham: Springer Nature Switzerland DOI: https://doi.org/10.1007/978-3-031-35251-5_5

Downloads

Published

2024-09-09

Issue

Section

Original

How to Cite

1.
Anass A, Imane E, Mabrouki J, Ziti S. Optimizing a Novel Tracking System for Living Beings and Objects through Advanced Mathematical Modeling and Graph Theory. Data and Metadata [Internet]. 2024 Sep. 9 [cited 2026 Jan. 14];3:.406. Available from: https://dm.ageditor.ar/index.php/dm/article/view/406