Is Big Data Adoption Shaping Business Landscapes? An Overview of Current Hotspots and Future Trends
DOI:
https://doi.org/10.56294/dm2025536Keywords:
Big data, Business Transformation, Big Data Adoption, Bibliometric AnalysisAbstract
Introduction: Most bibliometrics reviews in the prior studies have focused on tracking the evolution, applications, and implications of Big Data in business through different sectors using Web of Science or Scopus databases. Moreover, none of these studies has addressed the differences between developed and developing countries. These gaps indicate that we need a bibliometric review that can identify current trends and unexplored areas.
Objectives: This study aims to use a bibliometric approach to examine how Big Data is used in businesses using WoS and Scopus databases.
Methods: A Systematic Literature Review was conducted based on the country's economic status using the SPAR-4-SLR protocol for this research.
Results: The results show a significant growth in publications since 2013 among developed countries and since 2014 among developing ones such as the United States and the United Kingdom, along with China and India, respectively. Also, Machine Learning Overlaps Artificial Intelligence alongside Analytics, fueling innovative data-driven business processes around Big Data.
Conclusions: This article explores the transformative power of Big Data across domains, stressing its ability to cause substantial breakthroughs within the digital economy
References
Abdian, S., Shahri, M. H., & Khadivar, A. (2023). A Bibliometric Analysis of Research on Big Data and Its Potential to Value Creation and Capture. Iranian Journal of Management Studies, 16(1), 1–24. https://doi.org/10.22059/IJMS.2021.319211.674442
Aboelmaged, M., & Mouakket, S. (2020). Influencing models and determinants in big data analytics research: A bibliometric analysis. Information Processing and Management, 57(4), 102234. https://doi.org/10.1016/j.ipm.2020.102234 DOI: https://doi.org/10.1016/j.ipm.2020.102234
Agarwal, R., & Dhar, V. (2014). Big data, data science, and analytics: The opportunity and challenge for IS research. In Information systems research (Vol. 25, Issue 3, pp. 443–448). INFORMS. DOI: https://doi.org/10.1287/isre.2014.0546
Archak, N., Ghose, A., & Ipeirotis, P. G. (2011). Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), 1485–1509. DOI: https://doi.org/10.1287/mnsc.1110.1370
Ardito, L., Scuotto, V., Del Giudice, M., & Petruzzelli, A. M. (2019). A bibliometric analysis of research on Big Data analytics for business and management. Management Decision, 57(8), 1993–2009. https://doi.org/10.1108/MD-07-2018-0754 DOI: https://doi.org/10.1108/MD-07-2018-0754
Batistič, S., & van der Laken, P. (2019). History, Evolution and Future of Big Data and Analytics: A Bibliometric Analysis of Its Relationship to Performance in Organizations. British Journal of Management, 30(2), 229–251. https://doi.org/10.1111/1467-8551.12340 DOI: https://doi.org/10.1111/1467-8551.12340
Bouarar, A. C., Mouloudj, S., & Mouloudj, K. (2022). Digital Transformation. In COVID-19’s Impact on the Cryptocurrency Market and the Digital Economy (pp. 33–52). IGI Global. https://doi.org/10.4018/978-1-7998-9117-8.ch003 DOI: https://doi.org/10.4018/978-1-7998-9117-8.ch003
Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75–86.
Cetindamar, D., Kocaoglu, D., Lammers, T., & Merigo, J. M. (2019). A Bibliometric Analysis of Technology Management Research at PICMET for 2009–2018. 2019 Portland International Conference on Management of Engineering and Technology (PICMET), 1–7. https://doi.org/10.23919/PICMET.2019.8893667 DOI: https://doi.org/10.23919/PICMET.2019.8893667
Cetindamar, Dilek, & Phaal, R. (2023). Technology Management in the Age of Digital Technologies. IEEE Transactions on Engineering Management, 70(7), 2507–2515. https://doi.org/10.1109/TEM.2021.3101196 DOI: https://doi.org/10.1109/TEM.2021.3101196
Chadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, 9(5), 18–26. https://doi.org/10.5539/ass.v9n5p18 DOI: https://doi.org/10.5539/ass.v9n5p18
Chavez, H., Albornoz, M. B., & Martín, F. (2022). ‘Big data’ Research: A Bibliometric Analysis of the Scopus Database, 2009–2019. Journal of Scientometric Research, 11(1), 64–78. https://doi.org/10.5530/jscires.11.1.7 DOI: https://doi.org/10.5530/jscires.11.1.7
Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317. DOI: https://doi.org/10.1517/14712598.2014.920813
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 1165–1188. DOI: https://doi.org/10.2307/41703503
Delias, P., & Kitsios, F. C. (2023). Operational research and business intelligence as drivers for digital transformation. Operational Research, 23(3), 45. https://doi.org/10.1007/s12351-023-00784-8 DOI: https://doi.org/10.1007/s12351-023-00784-8
Du, Z., Liu, J., & Wang, T. (2022). Augmented Reality Marketing: A Systematic Literature Review and an Agenda for Future Inquiry. Frontiers in Psychology, 13(June), 1–18. https://doi.org/10.3389/fpsyg.2022.925963 DOI: https://doi.org/10.3389/fpsyg.2022.925963
El-Alfy, E.-S. M., & Mohammed, S. A. (2020). A review of machine learning for big data analytics: bibliometric approach. Technology Analysis and Strategic Management, 32(8), 984–1005. https://doi.org/10.1080/09537325.2020.1732912 DOI: https://doi.org/10.1080/09537325.2020.1732912
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF DOI: https://doi.org/10.1096/fj.07-9492LSF
Fauzi, M. A., Kamaruzzaman, Z. A., & Abdul Rahman, H. (2023). Bibliometric review on human resources management and big data analytics. International Journal of Manpower, 44(7), 1307–1327. https://doi.org/10.1108/IJM-05-2022-0247 DOI: https://doi.org/10.1108/IJM-05-2022-0247
Fischer, H., Seidenstricker, S., & Poeppelbuss, J. (2023). The triggers and consequences of digital sales: a systematic literature review. Journal of Personal Selling & Sales ManageMent, 43(1), 5–23. DOI: https://doi.org/10.1080/08853134.2022.2102029
George, Gerar, Haas, M. R., & Pentland, A. (2014). Big data and management. In Academy of management Journal (Vol. 57, Issue 2, pp. 321–326). Academy of Management Briarcliff Manor, NY. DOI: https://doi.org/10.5465/amj.2014.4002
George, Gerard, Osinga, E. C., Lavie, D., & Scott, B. A. (2016). Big data and data science methods for management research. In Academy of Management Journal (Vol. 59, Issue 5, pp. 1493–1507). Academy of Management Briarcliff Manor, NY. DOI: https://doi.org/10.5465/amj.2016.4005
Gonzalez-Brambila, C. N., Reyes-Gonzalez, L., Veloso, F., & Perez-Angón, M. A. (2016). The Scientific Impact of Developing Nations. PLOS ONE, 11(3), e0151328. https://doi.org/10.1371/journal.pone.0151328 DOI: https://doi.org/10.1371/journal.pone.0151328
Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/s11192-015-1798-9 DOI: https://doi.org/10.1007/s11192-015-1798-9
Huang, Y., Porter, A. L., Cunningham, S. W., Robinson, D. K. R., Liu, J., & Zhu, D. (2018). A technology delivery system for characterizing the supply side of technology emergence: Illustrated for Big Data & Analytics. Technological Forecasting and Social Change, 130(August 2017), 165–176. https://doi.org/10.1016/j.techfore.2017.09.012 DOI: https://doi.org/10.1016/j.techfore.2017.09.012
Kalantari, A., Kamsin, A., Kamaruddin, H. S., Ale Ebrahim, N., Gani, A., Ebrahimi, A., & Shamshirband, S. (2017). A bibliometric approach to tracking big data research trends. Journal of Big Data, 4(1), 30. https://doi.org/10.1186/s40537-017-0088-1 DOI: https://doi.org/10.1186/s40537-017-0088-1
Karaboğa, T., Şehitoğlu, Y., & Karaboğa, H. A. (2022). The Evolution of Big Data in Knowledge Management: A Bibliometric Analysis. Bilgi Dünyası, 23(1), 49–79. https://doi.org/10.15612/BD.2022.645 DOI: https://doi.org/10.15612/BD.2022.645
Khan, G. F., & Wood, J. (2015). Information technology management domain: emerging themes and keyword analysis. Scientometrics, 105(2), 959–972. https://doi.org/10.1007/s11192-015-1712-5 DOI: https://doi.org/10.1007/s11192-015-1712-5
Khanra, S., Dhir, A., & Mäntymäki, M. (2020). Big data analytics and enterprises: a bibliometric synthesis of the literature. Enterprise Information Systems, 14(6), 737–768. https://doi.org/10.1080/17517575.2020.1734241 DOI: https://doi.org/10.1080/17517575.2020.1734241
Kipper, L. M., Furstenau, L. B., Hoppe, D., Frozza, R., & Iepsen, S. (2020). Scopus scientific mapping production in industry 4.0 (2011–2018): a bibliometric analysis. International Journal of Production Research, 58(6), 1605–1627. https://doi.org/10.1080/00207543.2019.1671625 DOI: https://doi.org/10.1080/00207543.2019.1671625
Kozlowski, S. W. J., Chen, G., & Salas, E. (2017). One hundred years of the Journal of Applied Psychology: Background, evolution, and scientific trends. Journal of Applied Psychology, 102(3), 237. DOI: https://doi.org/10.1037/apl0000192
Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., Mukherjee, D., Corvello, V., Piñeiro-Chousa, J., Liguori, E., Palacios-Marqués, D., Schiavone, F., Ferraris, A., Fernandes, C., & Ferreira, J. J. (2022). Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, 16(8), 2577–2595. https://doi.org/10.1007/s11846-022-00588-8 DOI: https://doi.org/10.1007/s11846-022-00588-8
Kuhn, T. S. (2012). The structure of scientific revolutions. University of Chicago press. DOI: https://doi.org/10.7208/chicago/9780226458144.001.0001
Kulakli, A., & Osmanaj, V. (2020). Global Research on Big Data in Relation with Artificial Intelligence (A Bibliometric Study: 2008-2019). International Journal of Online and Biomedical Engineering (IJOE), 16(02), 31. https://doi.org/10.3991/ijoe.v16i02.12617 DOI: https://doi.org/10.3991/ijoe.v16i02.12617
Kwilinski, A. (2023). The Relationship between Sustainable Development and Digital Transformation: Bibliometric Analysis. Virtual Economics, 6(3), 56–69. https://doi.org/10.34021/ve.2023.06.03(4) DOI: https://doi.org/10.34021/ve.2023.06.03(4)
Lafuente-Lechuga, M., Cifuentes-Faura, J., & Faura-Martínez, U. (2021). Sustainability, Big Data and Mathematical Techniques: A Bibliometric Review. Mathematics, 9(20), 2557. https://doi.org/10.3390/math9202557 DOI: https://doi.org/10.3390/math9202557
Lim, W. M., Rasul, T., Kumar, S., & Ala, M. (2022). Past, present, and future of customer engagement. Journal of Business Research, 140(November 2021), 439–458. https://doi.org/10.1016/j.jbusres.2021.11.014 DOI: https://doi.org/10.1016/j.jbusres.2021.11.014
Liu, X., Sun, R., Wang, S., & Wu, Y. J. (2019). The research landscape of big data: a bibliometric analysis. Library Hi Tech, 38(2), 367–384. https://doi.org/10.1108/LHT-01-2019-0024 DOI: https://doi.org/10.1108/LHT-01-2019-0024
Loebbecke, C., & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. The Journal of Strategic Information Systems, 24(3), 149–157. https://doi.org/10.1016/j.jsis.2015.08.002 DOI: https://doi.org/10.1016/j.jsis.2015.08.002
Lu, N., Zhang, G., & Lu, J. (2014). Concept drift detection via competence models. Artificial Intelligence, 209(1), 11–28. https://doi.org/10.1016/j.artint.2014.01.001 DOI: https://doi.org/10.1016/j.artint.2014.01.001
Lundberg, L. (2023). Bibliometric mining of research directions and trends for big data. Journal of Big Data, 10(1), 112. https://doi.org/10.1186/s40537-023-00793-6 DOI: https://doi.org/10.1186/s40537-023-00793-6
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60–68.
Merendino, A., Dibb, S., Meadows, M., Quinn, L., Wilson, D., Simkin, L., & Canhoto, A. (2018). Big data, big decisions: The impact of big data on board level decision-making. Journal of Business Research, 93(September), 67–78. https://doi.org/10.1016/j.jbusres.2018.08.029 DOI: https://doi.org/10.1016/j.jbusres.2018.08.029
Mishra, D., Gunasekaran, A., Papadopoulos, T., & Childe, S. J. (2018). Big Data and supply chain management: a review and bibliometric analysis. Annals of Operations Research, 270(1–2), 313–336. https://doi.org/10.1007/s10479-016-2236-y DOI: https://doi.org/10.1007/s10479-016-2236-y
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*, the. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & Group, P.-P. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1–9. DOI: https://doi.org/10.1186/2046-4053-4-1
Nobre, G. C., & Tavares, E. (2017). Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study. Scientometrics, 111, 463–492. DOI: https://doi.org/10.1007/s11192-017-2281-6
Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR‐4‐SLR). International Journal of Consumer Studies, 45(4), 1–16. https://doi.org/10.1111/ijcs.12695 DOI: https://doi.org/10.1111/ijcs.12695
Ragazou, K., Passas, I., Garefalakis, A., Galariotis, E., & Zopounidis, C. (2023). Big Data Analytics Applications in Information Management Driving Operational Efficiencies and Decision-Making: Mapping the Field of Knowledge with Bibliometric Analysis Using R. Big Data and Cognitive Computing, 7(1), 13. https://doi.org/10.3390/bdcc7010013 DOI: https://doi.org/10.3390/bdcc7010013
Rassenfosse, G. de, & Seliger, F. (2019). Sources of knowledge flow between developed and developing nations. Science and Public Policy, 47(1), 16–30. https://doi.org/10.1093/scipol/scz042 DOI: https://doi.org/10.1093/scipol/scz042
Reshi, A., Shah, A., Shafi, S., & Qadri, M. H. (2023). Big Data in Healthcare - A Comprehensive Bibliometric Analysis of Current Research Trends. Scalable Computing: Practice and Experience, 24(3), 531–549. https://doi.org/10.12694/scpe.v24i3.2155 DOI: https://doi.org/10.12694/scpe.v24i3.2155
Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: a bibliometric analysis and systematic literature review. Management Decision, 57(8), 2052–2068. https://doi.org/10.1108/MD-07-2018-0821 DOI: https://doi.org/10.1108/MD-07-2018-0821
Shi, Y., Zhu, J., & Charles, V. (2021). Data science and productivity: A bibliometric review of data science applications and approaches in productivity evaluations. Journal of the Operational Research Society, 72(5), 975–988. https://doi.org/10.1080/01605682.2020.1860661 DOI: https://doi.org/10.1080/01605682.2020.1860661
Shukla, A. K., Muhuri, P. K., & Abraham, A. (2020). A bibliometric analysis and cutting-edge overview on fuzzy techniques in Big Data. Engineering Applications of Artificial Intelligence, 92(April), 103625. https://doi.org/10.1016/j.engappai.2020.103625 DOI: https://doi.org/10.1016/j.engappai.2020.103625
Sun, W., Huang, P., Song, H., & Feng, D. (2020). Bibliometric analysis of acute pancreatitis in Web of Science database based on CiteSpace software. Medicine, 99(49), e23208. https://doi.org/10.1097/MD.0000000000023208 DOI: https://doi.org/10.1097/MD.0000000000023208
Tandon, A., Kaur, P., Mäntymäki, M., & Dhir, A. (2021). Blockchain applications in management: A bibliometric analysis and literature review. Technological Forecasting and Social Change, 166(February), 120649. https://doi.org/10.1016/j.techfore.2021.120649 DOI: https://doi.org/10.1016/j.techfore.2021.120649
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375 DOI: https://doi.org/10.1111/1467-8551.00375
Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212–227. https://doi.org/10.1111/jpim.12523 DOI: https://doi.org/10.1111/jpim.12523
Yubo, S., Ramayah, T., Hongmei, L., Yifan, Z., & Wenhui, W. (2023). Analysing the current status, hotspots, and future trends of technology management: Using the WoS and scopus database. Heliyon, 9(9), e19922. https://doi.org/10.1016/j.heliyon.2023.e19922 DOI: https://doi.org/10.1016/j.heliyon.2023.e19922
Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Systems with Applications, 184(May), 115561. https://doi.org/10.1016/j.eswa.2021.115561 DOI: https://doi.org/10.1016/j.eswa.2021.115561
Zhang, X., Yu, Y., & Zhang, N. (2021). Sustainable supply chain management under big data: a bibliometric analysis. Journal of Enterprise Information Management, 34(1), 427–445. https://doi.org/10.1108/JEIM-12-2019-0381 DOI: https://doi.org/10.1108/JEIM-12-2019-0381
Zhang, Yi, Huang, Y., Porter, A. L., Zhang, G., & Lu, J. (2019). Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study. Technological Forecasting and Social Change, 146(April 2018), 795–807. https://doi.org/10.1016/j.techfore.2018.06.007 DOI: https://doi.org/10.1016/j.techfore.2018.06.007
Zhang, Yi, Zhang, G., Zhu, D., & Lu, J. (2017). Scientific evolutionary pathways: Identifying and visualizing relationships for scientific topics. Journal of the Association for Information Science and Technology, 68(8), 1925–1939. DOI: https://doi.org/10.1002/asi.23814
Zhang, Yucheng, Zhang, M., Li, J., Liu, G., Yang, M. M., & Liu, S. (2021). A bibliometric review of a decade of research: Big data in business research – Setting a research agenda. Journal of Business Research, 131(April 2019), 374–390. https://doi.org/10.1016/j.jbusres.2020.11.004 DOI: https://doi.org/10.1016/j.jbusres.2020.11.004
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ala’a M. Al-Momani, Mohammed A. Al-Sharafi, Mufleh Amin AL Jarrah, Omar Wassef Hijaeen (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.

