Fuzzy control to maximize the performance of a two-degree-of-freedom photovoltaic solar tracker
DOI:
https://doi.org/10.56294/dm2025588Keywords:
Fuzzy control, photovoltaic solar tracker, maximum power point tracking (MPPT), embedded systemAbstract
Introduction: The need to reduce global warming is increasing every day and is a priority for the governments of our people and for organizations that support the environment, which is why it is proposed to contribute to increasing the performance of photovoltaic solar systems, using emerging technologies. Methods: For this work, control techniques are used through intelligent computing, more specifically a fuzzy control system for the search for the maximum power point in a photovoltaic solar tracker. Results: As a result, a fuzzy controller was designed and implemented that allows obtaining the point of maximum solar efficiency at any time during the day. The solar tracker is oriented at the maximum power point (MPPT) at each instant in time, thus increasing energy production and reducing system losses due to the orientation of the PV panel. Conclusions: The use of computational intelligence techniques such as fuzzy logic allows for an increase in the performance of photovoltaic solar tracking systems, which was verified by implementing a programmed fuzzy controller in an embedded system
References
1. Li G, Li M, Taylor R, Hao Y, Besagni G, Markides CN. Solar energy utilisation: Current status and roll-out potential. Applied Thermal Engineering. 2022;209:118285. https://doi.org/10.1016/j.applthermaleng.2022.118285
2. Diniz ASAC, Costa SCS, Kazmerski LL. Photovoltaic technology: advances in solar cells and modules. En: Encyclopedia of Electrical and Electronic Power Engineering. 2023. p. 162-185. https://linkinghub.elsevier.com/retrieve/pii/B9780128212042001161
3. GSR-2023_Energy-Supply-Module. https://www.ren21.net/wp-content/uploads/2019/05/GSR-2023_Energy-Supply-Module.pdf
4. El Alami Y, Zohal B, Nasrin R, Benhmida M, Faize A, Baghaz E. Solar thermal, photovoltaic, photovoltaic thermal, and photovoltaic thermal phase change material systems: A comprehensive reference guide. International Communications in Heat and Mass Transfer. 2024;159:108135. https://doi.org/10.1016/j.icheatmasstransfer.2024.108135
5. Ngagoum Ndalloka Z, Vijayakumar Nair H, Alpert S, Schmid C. Solar photovoltaic recycling strategies. Solar Energy. 2024;270:112379. https://doi.org/10.1016/j.solener.2024.112379
6. Belsky AA, Glukhanich DY, Carrizosa MJ, Starshaia VV. Analysis of specifications of solar photovoltaic panels. Renewable and Sustainable Energy Reviews. 2022;159:112239. https://doi.org/10.1016/j.rser.2022.112239
7. Hafez AZ, Yousef AM, Harag NM. Solar tracking systems: Technologies and trackers drive types – A review. Renewable and Sustainable Energy Reviews. 2018;91:754-82. https://doi.org/10.1016/j.rser.2018.03.094
8. Huang BJ, Huang YC, Chen GY, Hsu PC, Li K. Improving Solar PV System Efficiency Using One-Axis 3-Position Sun Tracking. Energy Procedia. 2013;33:280-7. https://doi.org/10.1016/j.egypro.2013.05.069
9. Flores-Hernández DA, Palomino-Resendiz S, Lozada-Castillo N, Luviano-Juárez A, Chairez I. Mechatronic design and implementation of a two axes sun tracking photovoltaic system driven by a robotic sensor. Mechatronics. 2017;47:148-59. https://doi.org/10.1016/j.mechatronics.2017.09.014
10. Pérez García D, García Reina F, Hernández Eduardo D. DISMINUCIÓN DE LAS PÉRDIDAS DE ENERGÍA ELÉCTRICA POR DISTRIBUCIÓN USANDO UNA TECNOLOGÍA NOVEDOSA DE MEDICIONES Y CONTROL PARA LA TOMA DE DECISIONES. RCTA. 2020;2(34):144-50. https://doi.org/10.24054/16927257.v34.n34.2019.75
11. Vides Herrera CA, Pardo García A, Torres Chávez I. ROBOTIC SOLAR TRACKING MODULE USING MPPT SUPERVISED AND CONTROLLED BY ETHERNET. RCTA. 2014;1(23):112-9. https://ojs.unipamplona.edu.co/index.php/rcta/article/download/1890/5604/5972
12. Ferdaus RA, Mohammed MA, Rahman S, Salehin S, Mannan MA. Energy Efficient Hybrid Dual Axis Solar Tracking System. Journal of Renewable Energy. 2014;2014:1-12. https://doi.org/10.1155/2014/629717
13. Hernández Contreras SE, Vides Herrera CA, Pardo García A. USO DE COMPONENTES DE BAJO COSTO PARA EL DISEÑO E IMPLEMENTACIÓN DE UN CIRCUITO IMPRESO EN EL PROCESAMIENTO DIGITAL DE SEÑALES DE AUDIO. 2019;10(1):385-95.
14. Jamroen C, Komkum P, Kohsri S, Himananto W, Panupintu S, Unkat S. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments. 2020;37:100618. https://doi.org/10.1016/j.seta.2019.100618
15. Vieira RG, Guerra FKOMV, Vale MRBG, Araújo MM. Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator. Renewable and Sustainable Energy Reviews. 2016;64:672-81. https://doi.org/10.1016/j.rser.2016.06.089
16. Ruiz Ayala DC, Vides Herrera CA, Pardo García A. Monitoreo de variables meteorológicas a través de un sistema inalámbrico de adquisición de datos. Revista Investigación Desarrollo e Innovación. 2018;8(2):333-41. https://doi.org/10.19053/20278306.v8.n2.2018.7971
17. Baouche FZ, Abderezzak B, Ladmi A, Arbaoui K, Suciu G, Mihaltan TC, et al. Design and Simulation of a Solar Tracking System for PV. Applied Sciences. 2022;12(19):9682. https://doi.org/10.3390/app12199682
18. Ontiveros JJ, Ávalos CD, Loza F, Galán ND, Rubio GJ. Evaluation and Design of Power Controller of Two-Axis Solar Tracking by PID and FL for a Photovoltaic Module. International Journal of Photoenergy. 2020;2020:1-13. https://doi.org/10.1155/2020/8813732
19. Wu CH, Wang HC, Chang HY. Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development. 2022;66:308-18. https://doi.org/10.1016/j.esd.2021.12.013
20. Stefenon SF, Kasburg C, Freire RZ, Silva Ferreira FC, Bertol DW, Nied A. Photovoltaic power forecasting using wavelet Neuro-Fuzzy for active solar trackers. IFS. 2021;40(1):1083-96. https://doi.org/10.3233/JIFS-201279
21. Hammoumi AE, Motahhir S, Ghzizal AE, Chalh A, Derouich A. A simple and low‐cost active dual‐axis solar tracker. Energy Science & Engineering. 2018;6(5):607-20. https://doi.org/10.1002/ese3.236
22. Wu CH, Wang HC, Chang HY. Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development. 2022;66:308-18. https://doi.org/10.1016/j.esd.2021.12.013
23. Vides-Herrera CA, Pardo-García A, Cabello-Eras JJ, Ospino-Castro AJ. Optimization of anaerobic digestion through automatic control with neural networks: a bibliometric analysis. AiBi Revista de Investigación, Administración e Ingeniería. 2023;11(3):170-81. https://doi.org/10.15649/2346030X.3891
24. Farajdadian S, Hosseini SMH. Design of an optimal fuzzy controller to obtain maximum power in solar power generation system. Solar Energy. 2019;182:161-78. https://doi.org/10.1016/j.solener.2019.02.051
25. Cárdenas-Rodríguez S, Vides-Herrera CA, Pardo-García A. Sistema de alerta temprana de inundaciones para el río Arauca basado en técnicas de inteligencia artificial. rev investig desarro innov. 2022;12(2):315-26. https://doi.org/10.19053/20278306.v12.n2.2022.15274
26. Al-Majidi SD, Abbod MF, Al-Raweshidy HS. A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems. International Journal of Hydrogen Energy. 2018;43(31):14158-71. https://doi.org/10.1016/j.ijhydene.2018.06.002
27. Rojas Puentes MP, Parada CJ, Leal Pabón J. ESTRUCTURAS DESGLOSADAS DE TRABAJO (EDT) EN LA GESTIÓN DE ALCANCE DE PROYECTOS DE DESARROLLO DE SOFTWARE. RCTA. 2023;1(39):51-8. https://doi.org/10.24054/rcta.v1i39.1375
28. Parvaneh MH, Khorasani PG. A new hybrid method based on Fuzzy Logic for maximum power point tracking of Photovoltaic Systems. Energy Reports. 2020;6:1619-32. https://doi.org/10.1016/j.egyr.2020.06.010
29. Loukil K, Abbes H, Abid H, Abid M, Toumi A. Design and implementation of reconfigurable MPPT fuzzy controller for photovoltaic systems. Ain Shams Engineering Journal. 2020;11(2):319-28. https://doi.org/10.1016/j.asej.2019.10.002
30. Morejón MB, Reina FG, José J, Eras C, Santos VS. CARACTERIZACIÓN ENERGÉTICA DEL FUNCIONAMIENTO DE UN EQUIPO DE AIRE ACONDICIONADO EN UN LOCAL DADO. 2019.
31. Ullah K, Ishaq M, Tchier F, Ahmad H, Ahmad Z. Fuzzy-based maximum power point tracking (MPPT) control system for photovoltaic power generation system. Results in Engineering. 023;20:101466. https://doi.org/10.1016/j.rineng.2023.101466
32. Durán-Villamizar JE, Ruiz Morales YA, Martinez Suárez DR. MODELO DE DISEÑO INSTRUCCIONAL ORIENTADO AL FORTALECIMIENTO DEL PENSAMIENTO ALGORÍTMICO EN LOS ESTUDIANTES DE CURSOS INICIALES DE PROGRAMACIÓN DE LA UNIVERSIDAD DE PAMPLONA. RCTA. 2023;1(39):66-74. https://doi.org/10.24054/rcta.v1i39.1377
33. Lakshmikhandan K, Ramesh P, Santha Kumar C, Bharatiraja C, Thenmozhi R, Kamalesh MS. Real time exploited BLDC motor drive BLDC motor drive in lab view virtual instrumentation environment. Materials Today: Proceedings. 2021;45:3106-12. https://doi.org/10.1016/j.matpr.2020.12.155
34. Vides Herrera CA, Pardo García A, Ospino Castro AJ, García Álvaro A, de Godos Crespo I. Automatización de un digestor anaerobio con sistema embebido para la producción de biogás a partir de residuo del aceite de palma. RCTA. 2024;2(44):65-73. https://doi.org/10.24054/rcta.v2i44.2992.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carlos Arturo Vides Herrera, Aldo Pardo García, Ivaldo Torres Chávez (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.