Optimizing Genetic Algorithms with Multilayer Perceptron Networks for Enhancing TinyFace Recognition

Authors

DOI:

https://doi.org/10.56294/dm2024.594

Keywords:

TinyFace Recognition, Multilayer Perceptron (MLP), Genetic Algorithms (GA), Principal Component Analysis (PCA), Dimensionality Reduction, Machine Learning Optimization

Abstract

This study conducts an empirical examination of MLP networks investigated through a rigorous methodical experimentation process involving three diverse datasets: TinyFace, Heart Disease, and Iris. Study Overview: The study includes three key methods: a) a baseline training using the default settings for the Multi-Layer Perceptron (MLP), b) feature selection using Genetic Algorithm (GA) based refinement c) Principal Component Analysis (PCA) based dimension reduction. The results show important information on how such techniques affect performance. While PCA had showed benefits in low-dimensional and noise-free datasets GA consistently increased accuracy in complex datasets by accurately identifying critical features. Comparison reveals that feature selection and dimensionality reduction play interdependent roles in enhancing MLP performance. The study contributes to the literature on feature engineering and neural network parameter optimization, offering practical guidelines for a wide range of machine learning tasks

References

1. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

2. Al-batah M, Al-Batah M, Salem Alzboon M, Alzaghoul E. Automated Quantification of Vesicoureteral Reflux using Machine Learning with Advancing Diagnostic Precision. Data Metadata [Internet]. 2025 Jan 1;4:460. Available from: https://dm.ageditor.ar/index.php/dm/article/view/460

3. Alqaraleh M, Salem Alzboon M, Mohammad SA-B. Optimizing Resource Discovery in Grid Computing: A Hierarchical and Weighted Approach with Behavioral Modeling. LatIA [Internet]. 2025 Jan 1;3:97. Available from: http://dx.doi.org/10.62486/latia202597

4. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

5. Wahed MA, Alqaraleh M, Salem Alzboon M, Subhi Al-Batah M. Evaluating AI and Machine Learning Models in Breast Cancer Detection: A Review of Convolutional Neural Networks (CNN) and Global Research Trends. LatIA [Internet]. 2025 Jan 1;3:117. Available from: http://dx.doi.org/10.62486/latia2025117

6. Alqaraleh M, Salem Alzboon M, Subhi Al-Batah M, Solayman Migdadi H. From Complexity to Clarity: Improving Microarray Classification with Correlation-Based Feature Selection. LatIA [Internet]. 2025 Jan 1;3:84. Available from: http://dx.doi.org/10.62486/latia202584

7. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer.

8. Alqaraleh M, Salem Alzboon M, Subhi Al-Batah M. Real-Time UAV Recognition Through Advanced Machine Learning for Enhanced Military Surveillance. Gamification Augment Real [Internet]. 2025 Jan 1;3:63. Available from: http://dx.doi.org/10.56294/gr202563

9. Wahed MA, Alqaraleh M, Alzboon MS, Al-Batah MS. Application of Artificial Intelligence for Diagnosing Tumors in the Female Reproductive System: A Systematic Review. Multidiscip. 2025;3:54.

10. Zhang, K., Yang, K., & Zhu, Z. (2022). TinyFace: A large-scale low-resolution face recognition benchmark. Retrieved from https://qmul-tinyface.github.io/.

11. Wahed MA, Alqaraleh M, Alzboon MS, Subhi Al-Batah M, de la Salud R el C, la de la Inteligencia T. AI Rx: Revolutionizing Healthcare Through Intelligence, Innovation, and Ethics. Semin Med Writ Educ [Internet]. 2025 Jan 1;4(35):35. Available from: http://dx.doi.org/10.56294/mw202535

12. Mowafaq SA, Muhyeeddin A, Al-Batah MS. AI in the Sky: Developing Real-Time UAV Recognition Systems to Enhance Military Security. Data Metadata [Internet]. 2024 Sep 29;3:417. Available from: https://dm.ageditor.ar/index.php/dm/article/view/417

13. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.

14. Al-Batah MS, Salem Alzboon M, Solayman Migdadi H, Alkhasawneh M, Alqaraleh M. Advanced Landslide Detection Using Machine Learning and Remote Sensing Data. Data Metadata [Internet]. 2024 Oct 7;3. Available from: http://dx.doi.org/10.56294/dm2024.419

15. slam MS, Jyoti MNJ, Mia MS, Hussain MG. Fake Website Detection Using Machine Learning Algorithms. In: 2023 International Conference on Digital Applications, Transformation and Economy, ICDATE 2023. 2023.

16. Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.

17. Al-Batah MS, Alzboon MS, Alzyoud M, Al-Shanableh N. Enhancing Image Cryptography Performance with Block Left Rotation Operations. Ejbali R, editor. Appl Comput Intell Soft Comput [Internet]. 2024 Jan 23;2024(1):3641927. Available from: https://onlinelibrary.wiley.com/doi/10.1155/2024/3641927

18. Muhyeeddin A, Mowafaq SA, Al-Batah MS, Mutaz AW. Advancing Medical Image Analysis: The Role of Adaptive Optimization Techniques in Enhancing COVID-19 Detection, Lung Infection, and Tumor Segmentation. LatIA [Internet]. 2024 Sep 29;2:74. Available from: http://dx.doi.org/10.62486/latia202474

19. Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), 131–156.

20. Al-Batah M, Salem Alzboon M, Alqaraleh M, Ahmad Alzaghoul F. Comparative Analysis of Advanced Data Mining Methods for Enhancing Medical Diagnosis and Prognosis. Data Metadata [Internet]. 2024 Oct 29;3(3):83–92. Available from: http://dx.doi.org/10.56294/dm2024.465

21. Al-shanableh N, Alzyoud M, Al-husban RY, Alshanableh NM, Al-Oun A, Al-Batah MS, et al. Advanced Ensemble Machine Learning Techniques for Optimizing Diabetes Mellitus Prognostication: A Detailed Examination of Hospital Data. Data Metadata [Internet]. 2024 Sep 2;3. Available from: http://dx.doi.org/10.56294/dm2024.363

22. Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press.

23. Alqaraleh M, Alzboon MS, Al-Batah MS. Skywatch: Advanced Machine Learning Techniques for Distinguishing UAVs from Birds in Airspace Security. Int J Adv Comput Sci Appl [Internet]. 2024;15(11):1065–78. Available from: http://dx.doi.org/10.14569/IJACSA.2024.01511104

24. Mat Rani L, Mohd Foozy CF, Mustafa SNB. Feature Selection to Enhance Phishing Website Detection Based On URL Using Machine Learning Techniques. J Soft Comput Data Min. 2023;4(1):30–41.

25. Detrano, R., et al. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64, 304–310.

26. Alqaraleh M, Alzboon MS, Al-Batah MS, Abdel Wahed M, Abuashour A, Alsmadi FH. Harnessing Machine Learning for Quantifying Vesicoureteral Reflux: A Promising Approach for Objective Assessment. Int J Online Biomed Eng [Internet]. 2024 Aug 8;20(11):123–45. Available from: https://online-journals.org/index.php/i-joe/article/view/49673

27. Abuashour A, Salem Alzboon M, Kamel Alqaraleh M, Abuashour A. Comparative Study of Classification Mechanisms of Machine Learning on Multiple Data Mining Tool Kits. Am J Biomed Sci Res 2024 [Internet]. 2024;22(1):1. Available from: www.biomedgrid.com

28. Vapnik, V. (1998). Statistical learning theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons.

29. Alzboon MS, Bader AF, Abuashour A, Alqaraleh MK, Zaqaibeh B, Al-Batah M. The Two Sides of AI in Cybersecurity: Opportunities and Challenges. In: 2023 International Conference on Intelligent Computing and Next Generation Networks(ICNGN) [Internet]. IEEE; 2023. p. 1–9. Available from: https://ieeexplore.ieee.org/document/10396670/

30. Kalla D, Kuraku S. Phishing Website URL’s Detection Using NLP and Machine Learning Techniques. J Artif Intell. 2023;

31. Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). Wiley.

32. Vyvaswini T, Rao MPPN, Kousalya B, Pallavi G, Abdullal S, Siddartha P. Phishing Website Detection using Machine Learning. Int J Adv Res Sci Commun Technol. 2023;

33. Mathankar S, Sharma S, Wankhede T, Sahu M, Thakur S. Phishing Website Detection using Machine Learning Techniques. 2023 11th Int Conf Emerg Trends Eng Technol - Signal Inf Process (ICETET - SIP). 2023;

34. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1–3), 389–422.

35. Al-Batah MS. Ranked features selection with MSBRG algorithm and rules classifiers for cervical cancer. Int J Online Biomed Eng. 2019;15(12):4.

36. Al-Batah MS. Integrating the principal component analysis with partial decision tree in microarray gene data. IJCSNS Int J Comput Sci Netw Secur. 2019;19(3):24-29.

37. Fodor, I. K. (2002). A survey of dimensionality reduction techniques. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory.

38. Al-Batah MS. Testing the probability of heart disease using classification and regression tree model. Annu Res Rev Biol. 2014;4(11):1713-25.

39. Al-Batah MS. Modified recursive least squares algorithm to train the hybrid multilayered perceptron (HMLP) network. Appl Soft Comput. 2010;10(1):236-44.

40. Turk, M., & Pentland, A. (1991). Face recognition using eigenfaces. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 586–591). IEEE.

41. Al-Batah MS, Al-Eiadeh MR. An improved binary crow-JAYA optimisation system with various evolution operators, such as mutation for finding the max clique in the dense graph. Int J Comput Sci Math. 2024;19(4):327-38.

42. Al-Batah MS, Al-Eiadeh MR. An improved discreet Jaya optimisation algorithm with mutation operator and opposition-based learning to solve the 0-1 knapsack problem. Int J Math Oper Res. 2023;26(2):143-69.

43. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

44. Alzboon MS, Qawasmeh S, Alqaraleh M, Abuashour A, Bader AF, Al-Batah M. Pushing the Envelope: Investigating the Potential and Limitations of ChatGPT and Artificial Intelligence in Advancing Computer Science Research. In: 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA) [Internet]. IEEE; 2023. p. 1–6. Available from: https://ieeexplore.ieee.org/document/10293294/

45. Alzboon MS, Al-Batah MS. Prostate Cancer Detection and Analysis using Advanced Machine Learning. Int J Adv Comput Sci Appl [Internet]. 2023;14(8):388–96. Available from: http://thesai.org/Publications/ViewPaper?Volume=14&Issue=8&Code=IJACSA&SerialNo=43

46. Cover, T., & Thomas, J. (2006). Elements of information theory (2nd ed.). Wiley-Interscience.

47. Alzboon MS, Al-Batah MS, Alqaraleh M, Abuashour A, Bader AFH. Early Diagnosis of Diabetes: A Comparison of Machine Learning Methods. Int J online Biomed Eng. 2023;19(15):144–65.

48. Al-Batah MS, Alzboon MS, Alazaidah R. Intelligent Heart Disease Prediction System with Applications in Jordanian Hospitals. Int J Adv Comput Sci Appl [Internet]. 2023;14(9):508–17. Available from: http://thesai.org/Publications/ViewPaper?Volume=14&Issue=9&Code=IJACSA&SerialNo=54

49. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.

50. Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press.

51. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65–85.

52. Larrañaga, P., & Lozano, J. A. (Eds.). (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Springer.

53. Zhang, K., Yang, K., & Zhu, Z. (2022). TinyFace: A large-scale low-resolution face recognition benchmark. Retrieved from https://qmul-tinyface.github.io/.

54. Mirjalili, S. (2019). Genetic algorithm. In S. Mirjalili (Ed.), Evolutionary algorithms and neural networks (pp. 43–55). Springer.

55. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer.

56. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.

57. Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.

58. Detrano, R., et al. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64, 304–310.

59. Vapnik, V. (1998). Statistical learning theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons.

60. Zhang, K., Yang, K., & Zhu, Z. (2022). TinyFace: A large-scale low-resolution face recognition benchmark. Retrieved from https://qmul-tinyface.github.io/.

61. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

62. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., & Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64, 304–310.

63. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.

64. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

65. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer.

66. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.

67. Zhang, K., Yang, K., & Zhu, Z. (2022). TinyFace: A large-scale low-resolution face recognition benchmark. Retrieved from https://qmul-tinyface.github.io/.

68. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

69. Alzboon MS, Qawasmeh S, Alqaraleh M, Abuashour A, Bader AF, Al-Batah M. Machine Learning Classification Algorithms for Accurate Breast Cancer Diagnosis. In: 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA) [Internet]. IEEE; 2023. p. 1–8. Available from: https://ieeexplore.ieee.org/document/10293415/.

Downloads

Published

2024-12-30

Issue

Section

Original

How to Cite

1.
Subhi Al-Batah M, Alzboon M, Alqaraleh M. Optimizing Genetic Algorithms with Multilayer Perceptron Networks for Enhancing TinyFace Recognition. Data and Metadata [Internet]. 2024 Dec. 30 [cited 2025 Mar. 14];3:.594. Available from: https://dm.ageditor.ar/index.php/dm/article/view/594