Confidence Interval for Semiparametric Regression Model Parameters Based on Truncated Spline with Application to COVID-19 Dataset in Indonesia
DOI:
https://doi.org/10.56294/dm2024.609Keywords:
Confidence Interval, Truncated Spline, Case Increase Rate, Case Fatality Rate, COVID-19, Temperature, Sunlight IntensityAbstract
This study proposed a method for constructing confidence intervals for parameters in a semiparametric regression model using a truncated spline estimator, tailored for multiresponse and multipredictor longitudinal data. The semiparametric model integrated parametric and nonparametric components, facilitating the analysis of complex relationships. Confidence intervals were estimated using a pivotal quantity method.The approach was applied to COVID-19 data from Indonesia, exploring the associations between Time, Temperature, and Sunlight Intensity with the Case Increase Rate (CIR) and Case Fatality Rate (CFR). Data spanning April to November 2020 were sourced from 10 provinces with the highest CIR and CFR, obtained from http://kawalcovid.com/ and https://power.larc.nasa.gov/.The analysis identified an optimal Generalized Cross-Validation (GCV) value of 220, with one knot at 24.35°C for Temperature and two knots at 11.33 and 13 units for Sunlight Intensity. Confidence interval estimation demonstrated that all parametric components associated with Time were statistically significant, reflecting a consistent decline in CIR and CFR over time. For the nonparametric components, four parameters significantly influenced CIR, while three parameters significantly affected CFR, contingent on the knot points.The findings underscored the role of environmental factors in shaping COVID-19 dynamics and provided a robust analytical framework for future pandemic modeling. This study highlighted the utility of semiparametric regression with truncated splines in addressing complex epidemiological data, offering valuable insights for policymakers to design evidence-based mitigation strategies
References
[1] Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, et al. COVID-19: A global challenge with old history, epidemiology and progress so far. Molecules. 2021;26(1):39.
[2] Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509-16.
[3] Yuan J, Li M, Lv G, Lu ZK. Monitoring transmissibility and mortality of COVID-19 in Europe. Int J Infect Dis. 2020;95:311-5.
[4] Karadag E. Increase in COVID-19 cases and case-fatality and case-recovery rates in Europe: A cross-temporal meta-analysis. J Med Virol. 2020;92(9):1511-7.
[5] Irawan FA, Suhel H, Wibawanto AE. Identifikasi geospasial cuaca dan kelembapan terhadap penyebaran virus COVID-19 menggunakan sistem informasi geografis Provinsi Kalimantan Selatan. Jurnal Poros Teknik. 2020;12(2):99-106.
[6] Freisya A. Analisis keterkaitan antara faktor lingkungan dan penyebaran COVID-19. J Dunia Ilmu. 2023;3(5).
[7] Lestari B, Fatmawati, Budiantara IN. Spline estimator and its asymptotic properties in multiresponse nonparametric regression model. Songklanakarin J Sci Technol. 2020;42(3):533-48.
[8] Eubank RL. Spline smoothing and nonparametric regression. New York: Marcel Dekker; 1988.
[9] Chamidah N, Lestari B. Analisis regresi nonparametrik dengan perangkat lunak R. Surabaya: Airlangga University Press (AUP); 2022.
[10] Lestari B, Fatmawati, Budiantara IN, Chamidah N. Estimation of regression function in multiresponse nonparametric regression model using smoothing spline and kernel estimators. J Phys Conf Ser. 2018;1097(1):012091.
[11] Lestari B, Chamidah N, Saifudin T. Estimasi fungsi regresi dalam model regresi nonparametrik birespon menggunakan estimator smoothing spline dan estimator kernel. J Mat Stat Komputasi (JMSK). 2019;5(2):20-4.
[12] Lestari B, Fatmawati, Budiantara IN, Chamidah N. Smoothing parameter selection method for multiresponse nonparametric regression model using smoothing spline and kernel estimators approaches. J Phys Conf Ser. 2019;1397(1):012064.
[13] Chamidah N, Tjahjono E, Fadilah AR, Lestari B. Standard growth charts for weight of children in East Java using local linear estimator. J Phys Conf Ser. 2018;1097(1):012092.
[14] Ana E, Chamidah N, Andriani P, Lestari B. Modeling of hypertension risk factors using local linear additive nonparametric logistic regression. J Phys Conf Ser. 2019;1397(1):012067.
[15] Chamidah N, Zaman B, Muniroh L, Lestari B. Designing local standard growth charts of children in East Java province using a local linear estimator. Int J Innov Creat Change (IJICC). 2020;13(1):45-67.
[16] Chamidah N, Yonani YS, Ana E, Lestari B. Identification the number of Mycobacterium tuberculosis based on sputum image using local linear estimator. Bull Electr Eng Informatics (BEEI). 2020;9(5):2109-16.
[17] Tohari A, Chamidah N, Fatmawati, Lestari B. Modelling the number of HIV and AIDS cases in East Java using biresponse multipredictor negative binomial regression based on local linear estimator. Commun Math Biol Neurosci. 2021;73:1-17.
[18] Chamidah N, Lestari B, Larasati TN, Muniroh L. Designing Z-score standard growth charts based on height-for-age of toddlers using local linear estimator for determining stunting. AIP Conf Proc. 2024;3083(1):030002. DOI: 10.1063/5.0225156.
[19] Chamidah N, Gusti KH, Tjahjono E, Lestari B. Improving of classification accuracy of cyst and tumor using local polynomial estimator. TELKOMNIKA (Telecommun Comput Elec Control). 2019;17(3):1492-1500.
[20] Chamidah N, Lestari B. Estimating of covariance matrix using multi-response local polynomial estimator for designing children growth charts: A theoretical discussion. J Phys Conf Ser. 2019;1397(1):012072.
[21] Wahba G. Spline model for observational data. Philadelphia: Society for Industrial and Applied Mathematics; 1990.
[22] Chamidah N, Lestari B, Saifudin T. Modeling of blood pressures based on stress score using least square spline estimator in bi-response nonparametric regression. Int J Innov Creat Change (IJICC). 2019;5(3):1200-16.
[23] Fatmawati, Budiantara IN, Lestari B. Comparison of smoothing and truncated splines estimators in estimating blood pressure models. Int J Innov Creat Change (IJICC). 2019;5(3):1177-99.
[24] Chamidah N, Lestari B, Massaid A, Saifudin T. Estimating mean arterial pressure affected by stress scores using spline nonparametric regression model approach. Commun Math Biol Neurosci. 2020;72:1-12.
[25] Lestari B, Chamidah N, Aydin D, Yilmaz E. Reproducing kernel Hilbert space approach to multiresponse smoothing spline regression function. Symmetry. 2022;14(11):2227:1-22.
[26] Chamidah N, Lestari B, Saifudin T, Rulaningtyas R, Wardhani P, Budiantara IN, Aydin D. Determining the number of malaria parasites on blood smears microscopic images using penalized spline nonparametric Poisson regression. Commun Math Biol Neurosci. 2024;60.
[27] Aydin D, Yilmaz E, Chamidah N, Lestari B, Budiantara IN. Right-censored nonparametric regression with measurement error. Metrika (Int J Theor Appl Stats). 2024;87(3). DOI: 10.1007/s00184-024-00953-5.
[28] Chamidah N, Lestari B, Susilo H, Alsagaff MY, Budiantara IN, Aydin D. Spline estimator in nonparametric ordinal logistic regression model for predicting heart attack risk. Symmetry. 2024;16(11):1440:1-23.
[29] Chamidah N, Lestari B, Budiantara IN, Aydin D. Estimation of multiresponse multipredictor nonparametric regression model using mixed estimator. Symmetry. 2024;16(4):386:1-25.
[30] Chamidah N, Rifada M. Local linear estimator in bi-response semiparametric regression model for estimating median growth charts of children. Far East J Math Sci (FJMS). 2016;99(8):1233-44.
[31] Chamidah N, Zaman B, Muniroh L, Lestari B. Multiresponse semiparametric regression model approach to standard growth charts design for assessing nutritional status of East Java toddlers. Commun Math Biol Neurosci. 2023;30:1-23.
[32] Utami TW, Chamidah N, Saifudin T. Platelet modeling in DHF patients using local polynomial semiparametric regression on longitudinal data. J Teori dan Aplikasi Mat (JTAM). 2024;8(1):231-43.
[33] Tong T, Wu, He X. Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data. J Comput Stat Data Anal. 2012;56:23-33.
[34] Yang J, Yang H. A robust penalized estimation for identification in semiparametric additive models. Stat Probabil Lett. 2016;110:268-77.
[35] Ramadan W, Chamidah N, Zaman B, Muniroh L, Lestari B. Standard growth chart of weight for height to determine wasting nutritional status in East Java based on semiparametric least square spline estimator. IOP Conf Ser: Mater Sci Eng. 2019;546(5):052063.
[36] Chamidah N, Lestari B, Wulandari AY, Muniroh L. Z-score standard growth chart design of toddler weight using least square spline semiparametric regression. AIP Conf Proc. 2021;2329:060031.
[37] Setyawati M, Chamidah N, Kurniawan A. Modelling Scholastic Aptitude Test of State Islamic Colleges in Indonesia using least square spline estimator in longitudinal semiparametric regression. J Phys Conf Ser. 2021;1764:012077.
[38] Chamidah N, Lestari B, Budiantara IN, Saifudin T, Rulaningtyas R, Aryati A, Wardani P, Aydin D. Consistency and asymptotic normality of estimator for parameters in multiresponse multipredictor semiparametric regression model. Symmetry. 2022;14(2):336:1-18.
[39] Lestari B, Chamidah N, Budiantara IN, Aydin D. Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator. J King Saud Univ Sci. 2023;35(5):102664.
[40] Aydin D, Yilmaz E, Chamidah N, Lestari B. Right-censored partially linear regression model with error in variables: application with carotid endarterectomy dataset. Int J Biostatistics. 2023;20(1):1-34. DOI: 10.1515/ijb-2022-0044.
[41] Ampa AT, Budiantarara IN, Zain I. Selection of optimal smoothing parameters in mixed estimator of kernel and Fourier series in semiparametric regression. J Phys Conf Ser. 2021;2123:012035.
[42] Hidayati L, Chamidah N, Budiantara IN. Confidence interval of multiresponse semiparametric regression model parameters using truncated spline. Int J Acad Appl Res (IJAAR). 2020;4(1):14-8.
[43] Hariyono E, Rahmadhani E, Kusumawardhani KD. Analysis of temperature and relative humidity towards the dispersion of COVID-19 in Indonesia. J Phys Conf Ser. 2021;1747(1):012030. DOI: 10.1088/1742-6596/1747/1/012030.
[44] Oztig LI, Askin OE. Human mobility and coronavirus disease 2019 (COVID-19): A negative binomial regression analysis. Public Health. 2020;185:364-7.
[45] Nwosu UI, Obite CP, Josiah M, Bartholomew DC, Izunobi HC. The role of human population density and the elements of weather in the spread of COVID-19 in Nigeria: A negative binomial regression model approach. Asian J Adv Res. 2022;17(3):30-40.
[46] Tosepu R, Gunawan J, Effendy DV, Ahmad LOAI, Lestari H, Bahar H, Asfian P. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Sci Total Environ. 2020;725:138436.
Published
Issue
Section
License
Copyright (c) 2024 Maunah Setyawati, Nur Chamidah, Ardi Kurniawan, Dursun Aydin (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.