Toward Efficiency and Accuracy: Implementation of a Semiautomated Data Capture and Processing Model for the Construction of a Hospital-based Tumor Registry in Chile

Authors

  • Carolina Villalobos Arturo López Pérez Oncology Institute (FALP), Hospital-based Tumor Registry, Cancer Research Department, Santiago, Chile Author https://orcid.org/0009-0009-4024-3238
  • Carla Cavallera Arturo López Pérez Oncology Institute (FALP), Hospital-based Tumor Registry, Cancer Research Department, Santiago, Chile Author https://orcid.org/0009-0003-0607-4684
  • Matías Espinoza Arturo López Pérez Oncology Institute (FALP), Medical Informatics and Data Science Unit, Cancer Research Department, Santiago, Chile Author
  • María Francisca Cid Arturo López Pérez Oncology Institute (FALP), Hospital-based Tumor Registry, Cancer Research Department, Santiago, Chile Author
  • Inti Paredes Arturo López Pérez Oncology Institute (FALP), Medical Informatics and Data Science Unit, Cancer Research Department, Santiago, Chile Author https://orcid.org/0009-0004-7712-9846

DOI:

https://doi.org/10.56294/dm2023124

Keywords:

Hospital-Based, Cancer Registry, Automation

Abstract

Introduction: the innovative implementation of a Hospital-based cancer registry (HBCR) at the Arturo López Pérez Oncology Institute (FALP), showcasing the transition from a manual data extraction model to a semi-automation of the process. The purpose of this publication is to compare both methodologies by assessing their efficiency and accuracy.
Methods: the analysis was conducted by comparing the complete dataset of the FALP HBCR from 2017 to 2021. The efficiency variable is analyzed, taking into account the total execution time of the registration process, and the precision variable was measured through the internal data consistency method using the IARCcrg Tools Software
Results: in terms of efficiency, the analysis reveals that in 2017, employing a manual approach without automation, it was necessary to analyze 13 061 cases over 144 weeks with an average of 4 registrars to achieve a total of 3 211 cases fully registered. In contrast, over the subsequent 4 years (2018 to 2021), with varying degrees of automation, 65 088 cases were analyzed within 115 weeks, employing an average of 8 registrars, resulting in 13 537 fully registered. This method demonstrated to be 3 times more efficient. Regarding precision, the manual approach exhibited a 5 % error rate in registered cases, whereas the automated approach showed a 0,6 % error rate during the 2018-2021 period.
Conclusion: the obtained results highlight the significant impact of semi-automating the tumor registration process through the utilization of tools for data capture and processing, achieving a threefold increase in efficiency and reducing errors to 0,6 %

References

1. NIH. Cancer Registry - What is Cancer Registry? [Internet]. National Cancer Institute. https://seer.cancer.gov/registries/cancer_registry/cancer_registry.html.

2. White MC, Babcock F, Hayes NS, Mariotto AB, Wong FL, Kohler BA, et al. The History and Use of Cancer Registry Data by Public Health Cancer Control Programs in the United States. Cancer. 2017;123 Suppl 24:4969-4976. https://doi.org/10.1002/cncr.30905. DOI: https://doi.org/10.1002/cncr.30905

3. International Agency for Research on Cancer. International Classification of Diseases for Oncology. 3rd ed. Geneva: WHO; 2000.

4. Bray F, Parkin DM. Evaluation of data quality in the cancer registry: principles and methods. Part I: comparability, validity and timeliness. Eur J Cancer. 2009;45(5):747-755. https://doi.org/10.1016/j.ejca.2008.11.032 DOI: https://doi.org/10.1016/j.ejca.2008.11.032

5. Ferlay J, Burkhard C, Whelan S, Parkin DM. Check and conversion programs for cancer registries (IARC/IACR Tools for Cancer Registries). IARC Technical Report No. 42, Lyon, France. 2005. https://cri.tums.ac.ir/2/pbcr/References/Check%20and%20Conversion%20Programs%20for%20Cancer%20Registries.pdf

6. Hilsenbeck S, Glaefke G, Feigl P, Lane W. Quality for cancer registries. US Department of Health and Human Services. 1985;16-23. https://seer.cancer.gov/archive/manuals/historic/quality_control.pdf

7. al-Haddad BJ, Jedy-Agba E, Oga E, et al. Comparability, diagnostic validity and completeness of Nigerian cancer registries. Cancer Epidemiol. 2015;39(3):456-464. https://doi.org/10.1016/j.canep.2015.03.010. DOI: https://doi.org/10.1016/j.canep.2015.03.010

8. Ribes J, Gálvez J, Melià À, Clèries R, Messeguer X, Bosch FX. Automatización de un registro hospitalario de tumores. Gaceta Sanitaria. 2005;19(3):221-228. DOI: https://doi.org/10.1157/13075955

9. Epstein D, Bermúdez-Tamayo C, Cantarero D, et al. Special edition of Gaceta Sanitaria on evidence-based decision making in public health. Gac Sanit. 2018;32:403-4. DOI: https://doi.org/10.1016/j.gaceta.2018.05.001

10. Canova-Barrios C, Machuca-Contreras F. Interoperability standards in Health Information Systems: systematic review. Seminars in Medical Writing and Education 2022;1:7–7. https://doi.org/10.56294/mw20227 DOI: https://doi.org/10.56294/mw20227

11. Herrera IMR, Castañeda MEG, Henrion CT. La toma de decisiones en salud pública: Una revisión del procedimiento desde el enfoque racional. RESPYN Revista Salud Pública y Nutrición. 2012;13(2).

12. Inastrilla CRA. Data Visualization in the Information Society. Seminars in Medical Writing and Education 2023;2:25–25. https://doi.org/10.56294/mw202325 DOI: https://doi.org/10.56294/mw202325

13. Saesen R, Van Hemelrijck M, Bogaerts J, Wilson R, Lacombe D, van der Graaf WT, et al. Definición del papel de los datos del mundo real en la investigación clínica del cáncer: la posición de la Organización Europea para la Investigación y el Tratamiento del Cáncer. Eur J Cancer. 2023.186:52-61. https://doi.org/10.1016/j.ejca.2023.03.013 DOI: https://doi.org/10.1016/j.ejca.2023.03.013

Downloads

Published

2023-12-08

Issue

Section

Original

How to Cite

1.
Villalobos C, Cavallera C, Espinoza M, Cid MF, Paredes I. Toward Efficiency and Accuracy: Implementation of a Semiautomated Data Capture and Processing Model for the Construction of a Hospital-based Tumor Registry in Chile. Data and Metadata [Internet]. 2023 Dec. 8 [cited 2026 Jan. 9];2:124. Available from: https://dm.ageditor.ar/index.php/dm/article/view/61