Mobile-Based Skin Cancer Classification System Using Convolutional Neural Network
DOI:
https://doi.org/10.56294/dm2024.649Keywords:
CNN, VGG16 Architecture, Skin Cancer, Early Detection, Mobile ApplicationAbstract
Introduction: Skin cancer is a growing concern worldwide, often exacerbated by limited awareness and accessibility to diagnostic tools. Early detection is critical for improving survival rates and patient outcomes. This study developed a convolutional neural network (CNN) algorithm integrated into a mobile application to address this issue.
Methods: The researchers employed an agile methodology to design and implement a CNN-based skin cancer detection system using the VGG16 architecture. A dataset of skin cancer images from the International Skin Imaging Collaboration (ISIC) was used, consisting of 1,500 images divided into six classes. The model was trained on 1,200 images and tested on 300 images. Preprocessing steps included resizing images to 224x224 pixels, normalization, and image augmentation to enhance model generalization.
Results: The trained model achieved a test accuracy of 86.67% in classifying skin cancer types, with the highest performance for healthy skin (100% accuracy) and melanoma (98% recall). The mobile application allows users to upload or capture images of skin lesions and receive automated classification results, including lesion characteristics such as asymmetry, border, color, and diameter. Additional features include user authentication and history tracking, enhancing usability and accessibility.
Conclusions: The study successfully developed a reliable CNN-based skin cancer detection system integrated into a user-friendly mobile application. The application provides a valuable tool for early detection and awareness of skin cancer. Future work should focus on clinical validation, expanding the dataset to include diverse populations, and optimizing the system for mobile deployment
References
1. Shah A, Shah M, Pandya A, Sushra R, Sushra R, Mehta M, et al. A comprehensive study on skin cancer detection using artificial neural network (ANN) and convolutional neural network (CNN). Clin eHealth [Internet]. 2023;6:76–84. Available from: https://doi.org/10.1016/j.ceh.2023.08.002
2. Novaliendry D, Oktoria, Yang C-H, Desnelita Y, Irwan, Sanjaya R, et al. Hemodialysis Patient Death Prediction Using Logistic Regression. Int. J. Onl. Eng. 2023;19(09):66-80. Available from: https://doi.org/10.3991/ijoe.v19i09.40917
3. Wilvestra S, Lestari S, Asri E. Studi Retrospektif Kanker Kulit di Poliklinik Ilmu Kesehatan Kulit dan Kelamin RS Dr. M. Djamil Padang Periode Tahun 2015-2017. J Kesehat Andalas. 2018;7(Supplement 3):47.
4. Bariyah T, Rasyidi MA, Ngatini N. Convolutional Neural Network untuk Metode Klasifikasi Multi-Label pada Motif Batik. TechnoCom. 2021;20(1):155–65.
5. Novaliendry D, Pratama MFP, Budayawan K, Huda Y, Rahiman WMY. Design and Development of Sign Language Learning Application for Special Needs Students Based on Android Using Flutter. Int. J. Onl. Eng. 2023;19(16):76-92. Available from: https://doi.org/10.3991/ijoe.v19i16.44669
6. Yadav SS, Jadhav SM. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data [Internet]. 2019;6(1). Available from: https://doi.org/10.1186/s40537-019-0276-2
7. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature [Internet]. 2017;542(7639):115–8. Available from: http://dx.doi.org/10.1038/nature21056
8. Nurkhasanah, Murinto. Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network Classification of Facial Skin Diseases Using the Method of the Convolutional Neural Network. Sainteks [Internet]. 2021;18(2):183–90. Available from: https://www.kaggle.com/datasets
9. Dony Novaliendry, Asrul Huda, Latifah Annisa, Resti Rahmi Khairati Costa, Yudhistira, Fivia Eliza. The Effectiveness of Web-Based Mobile Learning for Mobile Subjects on Computers and Basic Networks in Vocational High Schools. Int. J. Interact. Mob. Technol. 2023;17(09):20-30. Available from: https://doi.org/10.3991/ijim.v17i09.39337
10. Posumah A, Waworuntu J, Komansilan T. Aplikasi Mobile Pengenalan Budaya Pulau Sulawesi Berbasis Augmented Reality. Edutik J Pendidik Teknol Inf dan Komun. 2021;1(5):513–27.
11. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol [Internet]. 2018;138(7):1529–38. Available from: https://doi.org/10.1016/j.jid.2018.01.028
12. Nursakti N, Asri S. Perancangan Aplikasi Online Shop pada Toko Nuzhly Shop Menggunakan Metode Agile. J Ilm Sist Inf dan Tek Inform. 2023;6(1):26–33.
13. Suhari S, Faqih A, Basysyar FM. Sistem Informasi Kepegawaian Mengunakan Metode Agile Development di CV. Angkasa Raya. J Teknol dan Inf. 2022;12(1):30–45.
14. da Camara R, Marinho M, Sampaio S, Cadete S. How do Agile Software Startups deal with uncertainties by Covid-19 pandemic? Int J Softw Eng Appl. 2020;11(4):15–34.
15. AGUSTINA R, MAGDALENA R, PRATIWI NKC. Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16. ELKOMIKA J Tek Energi Elektr Tek Telekomun Tek Elektron. 2022;10(2):446.
16. Xu M, Yoon S, Fuentes A, Park DS. A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognit [Internet]. 2023;137:109347. Available from: https://doi.org/10.1016/j.patcog.2023.109347
17. Natsir AMFM, Achmad A, Hazriani H. Klasifikasi Ikan Tuna Layak Ekspor Menggunakan Metode Convolutional Neural Network. J Ilm Sist Inf dan Tek Inform. 2023;6(2):172–83.
18. Penira A, Zahara A, Ramadhani M, Amin ML. Analisa Dan Perancangan Sistem E-Claim Pada Pt Asuransi Jiwa Syariah Bumiputera Cabang Medan. JTIK (Jurnal Tek Inform Kaputama). 2020;4(1):1–6.
19. Fauzan R, Siahaan D, Rochimah S, Triandini E. A Different Approach on Automated Use Case Diagram Semantic Assessment. Int J Intell Eng Syst. 2021;14(1):496–505.
20. Gedam MN, Meshram BB. Proposed Secure Activity Diagram for Software Development. Int J Adv Comput Sci Appl. 2023;14(6):671–80.
21. Panji Rachmat Setiawan, Rizdqi Akbar Ramadhan, Ause Labellapansa. Pelatihan Pemrograman Flutter. J Pengabdi Masy dan Penerapan Ilmu Pengetah. 2022;3(1):22–7.
22. Kusumo LN, Wijanto MC, Tan R, Royandi Y. Implementasi Realtime Cloud Service dalam Pengelolaan Nilai Tugas Akhir Mahasiswa. J Tek Inform dan Sist Inf. 2023;9(2):1–10.
23. Suprihanto S, Awaludin I, Fadhil M, Zulfikor MAZ. Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta. J Inform. 2022;9(2):116–22.
24. Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol [Internet]. 2022;158(5):495–503. Available from: https://doi.org/10.1001/jamadermatol.2022.0160.
25. Indonesia Cancer Care Community. Sekilas kanker kulit [Internet]. ICCC; [cited 2025 Jan 6]. Available from: https://iccc.id/sekilas-kanker-kulit
26. Novaliendry D, Ardi N, Yang CH. Development of a Semantic Text Classification Mobile Application Using TensorFlow Lite and Firebase ML Kit. Journal Européen des Systèmes Automatisés. 2024;57:1603-11. doi:10.18280/jesa.570607.
27. Ridhani D, Krismadinata K, Novaliendry D, Ambiyar, Effendi H. Development of an Intelligent Learning Evaluation System Based on Big Data. Data and Metadata. 2024;3. doi:10.56294/dm2024.569.
Published
Issue
Section
License
Copyright (c) 2024 Ihsanul Insan Aljundi, Dony Novaliendry, Yeka Hendriyani, Syafrijon (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.