Solutions for Insider Trading and Regulatory Challenges in Financial Governance
DOI:
https://doi.org/10.56294/dm2025680Keywords:
Insider Trading Detection, AI in Financial Governance, Regulatory Compliance, Market Stability, Decentralized Financial SystemsAbstract
Insider trading and regulatory inconsistencies have important historical challenges to the integrity and stability of global financial markets. These issues challenge trust, transparency, and fairness are requiring solutions. In this study, we introduce a novel artificial intelligence (AI)-driven system that carefully addressing these challenges. The proposed system employs machine learning models for insider trading detection, natural language processing (NLP) for sentiment analysis, and graph neural networks (GNNs) to detect irregular patterns in blockchain transactions. Moreover, reinforcement learning techniques are utilized here to complement regulatory standards dynamically, enhancing policy flexibility and market agreement. Explainable AI (XAI) were used here as well to ensure the transparency and trust in decision-making processes, this helps stakeholders to take actions. Experimental evaluations prove the system efficiency, with promising precision and recall percentages, enhanced governance in decentralized systems, and robust cross-jurisdictional regulatory alignment. This research contributes to knowledge by proving the transformative prospective of AI in strengthening regulatory frameworks and improving governance mechanisms in financial systems. The achievements here provide a roadmap for policymakers, financial institutions, and technology developers to build reasonable, efficient, and resistant markets.
El tráfico de información privilegiada y las inconsistencias regulatorias han sido desafíos históricos importantes para la integridad y estabilidad de los mercados financieros globales. Estos problemas desafían la confianza, la transparencia y la equidad y requieren soluciones. En este estudio, presentamos un nuevo sistema impulsado por inteligencia artificial (IA) que aborda cuidadosamente estos desafíos. El sistema propuesto emplea modelos de aprendizaje automático para la detección de tráfico de información privilegiada, procesamiento del lenguaje natural (NLP) para el análisis de sentimientos y redes neuronales gráficas (GNN) para detectar patrones irregulares en transacciones de blockchain. Además, aquí se utilizan técnicas de aprendizaje de refuerzo para complementar los estándares regulatorios de forma dinámica, mejorando la flexibilidad de las políticas y el acuerdo del mercado. Aquí también se utilizó IA explicable (XAI) para garantizar la transparencia y la confianza en los procesos de toma de decisiones, lo que ayuda a las partes interesadas a tomar medidas. Las evaluaciones experimentales prueban la eficiencia del sistema, con porcentajes prometedores de precisión y recuperación, una gobernanza mejorada en sistemas descentralizados y una sólida alineación regulatoria interjurisdiccional. Esta investigación contribuye al conocimiento al demostrar la perspectiva transformadora de la IA en el fortalecimiento de los marcos regulatorios y la mejora de los mecanismos de gobernanza en los sistemas financieros. Los logros aquí alcanzados proporcionan una hoja de ruta para que los responsables de las políticas, las instituciones financieras y los desarrolladores de tecnología construyan mercados razonables, eficientes y resistentes.
References
[1] Al-Mistarehi B, Hanandah S, Shtayat A, Qtaishat A, Alhasan TK, Al-kharabsheh B, et al. Investigating the dynamic creep and the tensile performance of zeolitic tuff-modified warm asphalt mixtures. The Open Transportation Journal. 2024;18(1).
[2] Badran A. Artificial intelligence between government and self-regulation policies: A theoretical approach. Hikama. 2023;7(4):93–110. doi:10.31430/IJZH4708. Available from: https://hikama.dohainstitute.org/en/issue07/pages/art05.aspx.
[3] Faguet J. Decentralization and governance. Hikama. 2023;7(4):187–218. doi:10.31430/RPAR6402.
[4] Abdullah S. Legislative confrontation to protect inside information in financial markets in light of the standards of the international organization of securities commissions (IOSCO) and comparative law. Journal of Law. 2024;48(1):145–88.
[5] Elbes M, Alrawashdeh Th, Almaita E, AlZu’bi Sh, Jararweh Y. A platform for power management based on indoor localization in smart buildings using long short-term neural networks. Transactions on Emerging Telecommunications Technologies. 2022;33(3):e3867.
[6] Alobud AS. Taming the faceless beast: Legislating deepfake technology. Journal of Law. 2024;48(3):1–42.
[7] Hjij H. Digital social networks challenges to classical political culture theory. Siyasat Arabiya. 2023;11(63):7–20. doi:10.31430/XNVH9747.
[8] Smith J, Clarke E. AI in financial compliance: Opportunities and challenges. Journal of Financial Technology. 2022;8(3):122–45. doi:10.1016/j.fintech.2022.08.004.
[9] Johnson E, White R. Explainable AI in financial systems: Enhancing trust and transparency. AI and Finance Quarterly. 2022;10(4):321–40. doi:10.9101/ijkl5678.
[10] Ichrakieh A. The resolution of blockchain disputes through arbitration and the enforceability of its awards in accordance with the New York Convention on the Recognition and Enforcement of Foreign Arbitral Awards. Journal of Law. 2024;48(3):1–48.
[11] Alrwele N. Efficacy of artificial intelligence in improving EFL phonemic awareness among sixth grade female students. The Educational Journal. 2023;37(148):117–45.
[12] Lee S, Thompson M. Advanced AI models for fraud detection in financial systems. Journal of Computational Finance. 2022;18(3):100–20. doi:10.1016/j.jcompfin.2022.08.003.
[13] Brown A, Lee M. Adaptive AI models for real-time market surveillance. International Journal of Financial Analysis. 2022;8(3):233–50. doi:10.5678/efgh1234.
[14] Alzoubi S, Aldiabat K, Al-diabat M, Abualigah L. An extensive analysis of several methods for classifying unbalanced datasets. Journal of Autonomous Intelligence. 2024;7(3).
[15] Mosleh A, Tarawneh T, Alhasan TK. Justice in the balance: The crucial role of disclosure in ensuring justice in Jordanian arbitration. Conflict Resolution Quarterly. 2024;1(1):1–10. doi:10.1002/crq.21427.
[16] AlAli M. The domains of artificial intelligence applications and their relationship with multiple intelligences among adolescents. Journal of the Gulf and Arabian Peninsula Studies. 2023;49(189):279–318.
[17] Fekry M, Osama A. The internet, political culture, and the paradox of collective memory: The case of the Egyptian January 25, 2011 revolution. Siyasat Arabiya. 2023;11(63):22–40. doi:10.31430/MSUE5739.
[18] Jebril I, Al-Zaqeba M, Al-Khawaja H, Obaidy A, Marashdah O. Enhancing estate governance using blockchain technology through risk management in estate governance of business sustainability. International Journal of Data and Network Science. 2024;8(3):1649–58.
[19] Alnuhait H, Alzyadat W, Althunibat A, Kahtan H, Zaqaibeh B, Al-Khawaja HA. Web application performance assessment: A study of responsiveness, throughput, and scalability. International Journal of Advanced and Applied Sciences. 2024;11(9).
[20] Gupta R, Sharma A. The impact of AI-driven risk models on financial decision making. International Journal of Financial Studies. 2022;10(4):145–69. doi:10.3390/ijfs2022.104005.
[21] Patel R, Mehta A. Real-time insider trading detection using AI models. Artificial Intelligence Review. 2023;36(1):101–25. doi:10.1007/s10462-022-10117-4.
[22] Nguyen T, Tran M. Blockchain and AI integration for enhanced financial regulation. Journal of Financial Innovation. 2023;9(2):77–95. doi:10.1016/j.fininnov.2023.02.006.
[23] Chen L, Zhang Y. Decentralized finance: Regulatory risks and AI solutions. Blockchain Journal. 2022;15(2):33–47. doi:10.1016/j.blockj.2022.05.002.
[24] AlMufeez Kh. Digital leadership skills of public educational schools principals in Saudi Arabia. The Educational Journal. 2023;37(148):85–115.
[25] Martinez S, Green D. The role of explainable AI in automated financial governance. Journal of Artificial Intelligence and Finance. 2023;12(1):55–70. doi:10.1212/mnop6789.
[26] Alshehadeh A, Elrefae G, Belarbi A, Qasim A, Al-Khawaja H. The impact of business intelligence tools on sustaining financial report quality in Jordanian commercial banks. Uncertain Supply Chain Management. 2023;11(4):1667–76.
[27] Almutairi AMN. The role of comparative systems in promoting competitive neutrality on the Kuwaiti competition protection law: A comparative study. Journal of Law. 2024;48(3):1–40.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Haneen A. Al-khawaja, Abdul Razzak Alshehadeh, Faisal Asad Aburub, Ali Matar, Osaid Hasan Althnaibat (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.