Use of mathematical modeling as a methodological proposal for the development of cognitive competences in the subject of differential equations
DOI:
https://doi.org/10.56294/dm2025685Keywords:
mathematical modeling, cognitive skills, differential equationsAbstract
This study proposes to integrate mathematical modeling as an active methodology with a pedagogical approach oriented toward competency development. The objective is to use modeling activities as a bridge that connects problem-solving with the strengthening of cognitive competencies. The model contrasts with traditional methods, which typically focus on the execution of algorithms and the memorization of theorems and formulas, limiting mathematical learning to obtaining results without exploring their application to engineering problems or practical contexts. The research is conducted in an educational environment, where students could analyze, describe, formulate hypotheses, contrast them, reflect, argue, and communicate their ideas. The research design is quasi-experimental, descriptive-correlational, and the research employs scientific, inductive-deductive, and analytical-synthetic methods, basing the methodology on problem-solving in accordance with the progress of the Differential Equations course syllabus. To evaluate the proposal, techniques such as direct observation, teamwork, multiple-choice tests, and feedback were used with second-semester students. The results show that methodology promotes greater development of cognitive skills compared to the traditional approach based on mechanical problem-solving. It can be concluded that mathematical modeling allows students to develop cognitive skills such as critical thinking, creativity, and problem-solving through the analysis, synthesis, and evaluation of information.
References
1. Laledj N, Salim A, Lazreg JE, Abbas S, Ahmad B, Benchohra M. On implicit fractional q-difference equations: Analysis and stability. Math Methods Appl Sci. 2022 Nov 30;45(17):10775–97.
2. Guerrero Ortiz C, Camacho Machín M, Mejía Velasco HR. Dificultades de los estudiantes en la interpretación de las soluciones de ecuaciones diferenciales ordinarias que modelan un problema. Enseñanza de las ciencias [Internet]. 2010 [cited 2025 Apr 1];28(3):0341–52. Available from: https://ddd.uab.cat/record/64498
3. Prasath SG, Marthelot J, Govindarajan R, Menon N. Shapes of a filament on the surface of a bubble. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021;477(2253).
4. Romero Pérez JF, Lavigne Cerván R. Dificultades en el Aprendizaje Unificación de Criterios Diagnósticos. I. Definición, Características y tipos. CONSEJERÍA DE EDUCACIÓN [Internet]. 2004 Jan 22 [cited 2024 Oct 20];1(1):186. Available from: https://repositorio.minedu.gob.pe/handle/20.500.12799/4775
5. Mao Y, Zhong S, Yin H. Model-based deep reinforcement learning for active control of flow around a circular cylinder using action-informed episode-based neural ordinary differential equations. Physics of Fluids. 2024 Aug 1;36(8).
6. Salett Biembengut M, Hein N. Modelación matemática y los desafíos para enseñar matemática. 2004;16(2):105–25.
7. Lee K, Parish EJ. Parameterized neural ordinary differential equations: applications to computational physics problems. Proceedings of the Royal Society A [Internet]. 2021 [cited 2025 Apr 1];477(2253). Available from: https://royalsocietypublishing.org/doi/10.1098/rspa.2021.0162
8. Andrea C, Montenegro D, Arely V, Morales V. “Aprendizaje basado en Competencias: una propuesta de Aplicación.”
9. Wang J, Wang S, Unjhawala HM, Wu J, Negrut D. MBD-NODE: physics-informed data-driven modeling and simulation of constrained multibody systems. Multibody Syst Dyn. 2024;
10. Villa Sánchez A, Poblete Ruiz M, Olalla AG, Mora GM, Paredes JAM, Otero JM, et al. Aprendizaje basado en competencias: una propuesta para la evaluación de las competencias genéricas. Aprendizaje basado en competencias: una propuesta para la evaluación de las competencias genéricas. 2007;
11. Delors J, Mufti I Al, Amagi I, Carneiro R, Chung F, Geremek B, et al. La educación encierra un tesoro: informe para la UNESCO de la Comisión Internacional sobre la Educación para el Siglo Veintiuno. 1997 [cited 2024 Oct 20]; Available from: https://repositorio.minedu.gob.pe/handle/20.500.12799/1847
12. Beneitone P. Desafíos de la convergencia curricular en América Latina: la nueva fase del proyecto ALFA Tuning América Latina 2011 – 2014. 2014; Available from: http://www.tuningal.org/
13. ECUACIONES DIFERENCIALES ORDINARIAS TEORÍA Y EJERCICIOS RESUELTOS.
14. Bojorque Iñeguez JA. Métodos para el análisis de la estabilidad de pendientes. MASKANA [Internet]. 2011 Dec 22 [cited 2025 Apr 1];2(2):1–16. Available from: https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/379
15. Cepeda LC, Alarcón FB, Cundar AN, Arévalo CF. Aplicación de las ecuaciones diferenciales ordinarias de primer orden para la solución de problemas físicos. Dominio de las Ciencias [Internet]. 2023 Jul 11 [cited 2025 Apr 1];9(3):336–55. Available from: https://dominiodelasciencias.com/ojs/index.php/es/article/view/3446
16. Oyola De Los Rios DDM, Parraguéz Castro PL. Ecuaciones diferenciales ordinarias en la solución de problemas de oferta y demanda asistidos con Matlab. 2020 [cited 2025 Apr 1]; Available from: http://repositorio.unprg.edu.pe/handle/20.500.12893/8884
17. Teresa M, García R, Diéguez Batista R, Raudel;, Díaz T. Propuesta de perfeccionamiento para la formación del pensamiento reflexivo desde el proceso de enseñanza aprendizaje de la matemática en carreras. [cited 2025 Apr 1]; Available from: https://www.redalyc.org/articulo.oa?
18. Lucía Brito-Vallina M, Alemán-Romero I, Fraga-Guerra E, Luís Para-García J, Arias-De Tapia RI. Artículo Original Papel de la modelación matemática en la formación de los ingenieros Role of mathematical modeling in the training of engineers. Ingeniería Mecánica. 2011;14(2):129–39.
19. Vu H, Phu ND, Hoa N Van. A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative. Commun Nonlinear Sci Numer Simul. 2023 Jun 15;121.
20. Marquéz Fernandéz CA, Gaviria C, López Rivera YM. Evaluación del desarrollo de competencias a partir de la modelación matemática. Ingenierías USBMed. 2019 Aug 17;10(2):8–15.
21. Gallardo PC, Politécnico I, México N. Cuadernos de Investigación y Formación en Educación Matemática. Vol. 10. 2012.
22. Claudio N, Rosas C. EN BÚSQUEDA DE UN SISTEMA DE FORMACION DE HABILIDADES EN MATEMÁTICAS. INNOVA Research Journal. 2017;2(2):84–94.
23. Data Science Trends 2023 | Jobs, Data Analytics, Security, AI, ML [Internet]. [cited 2025 Apr 5]. Available from: https://www.discoverdatascience.org/articles/data-science-trends/
24. Sample Size Calculator | Find the Right Sample Size for Your Research [Internet]. [cited 2025 Apr 5]. Available from: https://tgmresearch.com/tools/sample-size-calculator.html?msclkid=7f29d5e276071baac7b1b2114e900398.
Published
Issue
Section
License
Copyright (c) 2025 Hugo Humberto Paz-León, Marco Hjalmar Velasco-Arrellano, Lenin Santiago Orozco-Cantos, Lidia Castro-Cepeda (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.