Application of the Lean Six Sigma Methodology Enhanced by Fuzzy Logic Optimizing Mold Changeover Times in the Automotive Injection Industry
DOI:
https://doi.org/10.56294/dm2025703Keywords:
Fuzzy logic, Line balancing, LSS approach, Operational efficiency (PCE), Mold injectionAbstract
Minimizing mold changeover time is a critical challenge in the plastic injection molding industry, as it directly impacts productivity, operational efficiency, and competitiveness. This study introduces an integrated approach that combines Lean Manufacturing tools, the DMAIC methodology (Define, Measure, Analyze, Improve,Control), and Single Minute Exchange of Dies (SMED) techniques, enhanced by fuzzy logic and artificial intelligence (AI). The methodology focuses on improving mold changeover processes for the NEGRI BOSSI 650 machine by identifying bottlenecks, transforming internal tasks into external ones, and optimizing workflows to reduce downtime and improve overall efficiency. Key phases of the study included identifying the root causes of inefficiencies through data collection and analysis, streamlining task sequences using real-time process data, and balancing the production line by redistributing workloads and reducing bottlenecks. Fuzzy logic and AI technologies were employed to support decision-making and enhance optimization, ensuring a robust and adaptable framework for continuous improvement. The results obtained were of high impact a 65% reduction in mold changeover time and a 46.8% improvement in Process Cycle Efficiency (PCE) with significant
improvements in terms of the global line balancing. These findings validate the effectiveness of combining Lean principles with advanced technologies such as fuzzy logic in solving Industry challenges, improving resource utilization, and ensuring long-term operational performance. This study just goes to prove that a structured Lean Manufacturing approach combined with innovative tools and automation can drive significant improvement in the plastic injection molding industry, establishing a scalable and competitive strategy for operational excellence.
References
1. A novel concept of agile assembly machine for sets applied in the automotive industry | The International Journal of Advanced Manufacturing Technology [Internet]. [cité 3 janv 2025]. Disponible sur: https://link.springer.com/article/10.1007/s00170-017-0109-4
2. Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, et al. Image-Guided Tissue Engineering of Anatomically Shaped Implants via MRI and Micro-CT Using Injection Molding. Tissue Eng Part A. juill 2008;14(7):1195‑202.
3. Daniyan I, Adeodu A, Mpofu K, Maladzhi R, Katumba MGKK. Application of lean Six Sigma methodology using DMAIC approach for the improvement of bogie assembly process in the railcar industry. Heliyon [Internet]. 1 mars 2022 [cité 3 janv 2025];8(3). Disponible sur: https://www.cell.com/heliyon/abstract/S2405-8440(22)00331-0
4. Nandakumar N, Saleeshya PG, Harikumar P. Bottleneck Identification And Process Improvement By Lean Six Sigma DMAIC Methodology. Mater Today Proc. 1 janv 2020;24:1217‑24.
5. Dahda SS, Andesta D, Wicaksono AS. Measuring leanness index using fuzzy logic approach. J Phys Conf Ser. févr 2020;1469(1):012040.
6. Reducing Setup Time in Injection Process Using SMED Methodology - ProQuest [Internet]. [cité 3 janv 2025]. Disponible sur: https://www.proquest.com/openview/a060e651a4785c85237d10da815ad137/1?pq-origsite=gscholar&cbl=2026366&diss=y
7. Khan SA, Jaboa AGHB, Ishtiaq P. DMAIC methodology for productivity improvement of preventive maintenance in an oil and gas company. Int J Bus Excell. janv 2024;32(1):1‑24.
8. Lin BT, Kuo CC. Application of the fuzzy-based Taguchi method for the structural design of drawing dies. Int J Adv Manuf Technol. 1 juill 2011;55(1):83‑93.
9. PREDICTING THE WEAVABILITY OF A NEW WOOLLEN FABRIC USING FUZZY LOGIC.
10. El Bakkali M, Messnaoui R, Elkhaoudi M, Cherkaoui O, Soulhi A. Predicting saturation for a new fabric using artificial intelligence (fuzzy logic): experimental part. Data Metadata. 2024;3.
11. Lakhouil H, Soulhi A. Fuzzy Decision-Making Model for the inventory leveling under uncertainty condition. Data Metadata. 2024;3.
12. Womack JP, Jones DT, Roos D. The Machine That Changed the World: The Story of Lean Production-- Toyota’s Secret Weapon in the Global Car Wars That Is Now Revolutionizing World Industry. Simon and Schuster; 2007. 353 p.
13. CHALLENGES OF LEAN MANAGEMENT Investigating the challenges and developing a recommendation for implementing Lean management techniques.
14. Madsen DØ, Risvik S, Stenheim T. The diffusion of Lean in the Norwegian municipality sector: An exploratory survey. Cogent Bus Manag [Internet]. 1 janv 2017 [cité 3 janv 2025]; Disponible sur: https://www.tandfonline.com/doi/abs/10.1080/23311975.2017.1411067
15. Essays in just-in-time manufacturing: Firm value, product variety, and supplier coordination - ProQuest [Internet]. [cité 3 janv 2025]. Disponible sur: https://www.proquest.com/openview/0f0859732fe3208e67fceeb59abc5bb9/1?pq-origsite=gscholar&cbl=18750&diss=y
16. Thomas AJ, Francis M, Fisher R, Byard P. Implementing Lean Six Sigma to overcome the production challenges in an aerospace company. Prod Plan Control. 2016;27(7‑8):591‑603.
17. Dillon AP, Shingo S. A Revolution in Manufacturing: The SMED System. CRC Press; 1985. 394 p.
18. Artificial Intelligence in Manufacturing | SpringerLink [Internet]. [cité 3 janv 2025]. Disponible sur: https://link.springer.com/chapter/10.1007/978-3-031-04583-7_2
19. Endrigo Sordan J, Andersson R, Antony J, Lopes Pimenta M, Oprime PC. How Industry 4.0, artificial intelligence and augmented reality can boost Digital Lean Six Sigma. Total Qual Manag Bus Excell. 2 oct 2024;35(13‑14):1542‑66.
20. Kumar MB, Parameshwaran R, Antony J, Cudney E. Framework for Lean Implementation Through Fuzzy AHP-COPRAS Integrated Approach. IEEE Trans Eng Manag. nov 2023;70(11):3836‑48.
21. Badhotiya GK, Gurumurthy A, Marawar Y, Soni G. Lean manufacturing in the last decade: insights from published case studies. J Manuf Technol Manag. 6 mars 2024;35(4):766‑98.
22. Operations and Business Analytics, University Science Malaysia, Penang, Malaysia., Kays* HME, Prodhan MdS, Mechanical Engineering, International University of Business Agriculture & Technology, Dhaka, Bangaldesh., Karia* N, Operations and Business Analytics, University Science Malaysia, Penang, Malaysia., et al. Improvement of Operational Performance through Value Stream Mapping and Yamazumi Chart: A case of Bangladeshi RMG Industry. Int J Recent Technol Eng IJRTE. 30 nov 2019;8(4):11977‑86.
23. Mortada A, Soulhi A. Improvement of Assembly Line Efficiency by Using Lean Manufacturing Tools and Line Balancing Techniques. [cité 7 nov 2024]; Disponible sur: http://www.astrj.com/Improvement-of-Assembly-Line-Efficiency-by-Using-Lean-Manufacturing-Tools-and-Line,169257,0,2.html
24. Hasta A, Harwati. Line Balancing with Reduced Number of Operator: A Productivity Improvement. IOP Conf Ser Mater Sci Eng. 1 mai 2019;528(1):012060.
25. El Bakkali M, Messnaoui R, Elkhaoudi M, Cherkaoui O, Rivenq Menhaj A, Soulhi A. PREDICTING THE WEAVABILITY OF A NEW WOOLLEN FABRIC USING FUZZY LOGIC. J Theor Appl Inf Technol. 2024;102(23):8740‑53.
26. Desai D, Prajapati BN. Competitive advantage through Six Sigma at plastic injection molded parts manufacturing unit: A case study. Int J Lean Six Sigma. 9 oct 2017;8(4):411‑35.
27. Pereira AMH, Silva MR, Domingues MAG, Sá JC. Lean Six Sigma Approach to Improve the Production Process in the Mould Industry: a Case Study. Qual Innov Prosper. 30 nov 2019;23(3):103‑21.
28. Analysis of Single Minute Exchange Die in manufacturing processes.
29. Integration of value stream mapping with DMAIC for concurrent Lean-Kaizen: A case study on an air-conditioner assembly line - Wei Guo, Pingyu Jiang, Lei Xu, Guangzhou Peng, 2019 [Internet]. [cité 3 janv 2025]. Disponible sur: https://journals.sagepub.com/doi/full/10.1177/1687814019827115
30. Michel P, Courcon P, Coulon P. PHENIX EXPERIMENTAL IRRADIATION PROGRAM. In 1985. p. 3‑6.
31. Roriz C, Nunes E, Sousa S. Application of Lean Production Principles and Tools for Quality Improvement of Production Processes in a Carton Company. Procedia Manuf. 1 janv 2017;11:1069‑76.
32. Ducruet C, Lugo I. Cities and Transport Networks in Shipping and Logistics Research. Asian J Shipp Logist. 1 août 2013;29(2):145‑66.
33. Szauter F, Péter T, Bokor J. Complex analysis of the dynamic effects of car population along the trajectories. ASMEIEEE Int Conf Mechatron Embed Syst Appl MESA. 2015;1‑6.
34. Modeling nonlinear road traffic networks for junction control.
35. Optimization Heuristics for Supplies of Assembly Linest.
36. Improta G, Guizzi G, Ricciardi C, Giordano V, Ponsiglione AM, Converso G, et al. Agile Six Sigma in Healthcare: Case Study at Santobono Pediatric Hospital. Int J Environ Res Public Health. janv 2020;17(3):1052.
37. Obusele EP, Sodhi DHS. Effecting Lean Manufacturing Techniques: A Review. J Pharm Negat Results. 2022;13(10).
38. Antoniolli I, Guariente P, Pereira T, Ferreira LP, Silva FJG. Standardization and optimization of an automotive components production line. Procedia Manuf. 1 janv 2017;13:1120‑7.
39. Application of Value Stream Mapping in the Improvement of Lead Time, Takt Time and Over Flowing Labour in a Paper Manufacturing Company: A Lean Six Sigma Approach.
40. Ahmed S, Manaf NHA, Islam R. Measuring Lean Six Sigma and quality performance for healthcare organizations. Int J Qual Serv Sci. 6 sept 2018;10(3):267‑78.
41. Mohyiddine S. Implémentation et déploiement d’une nouvelle approche à base de Lean Six Sigma pour le développement et l’amélioration de la durabilité de la production des petites et moyennes entreprises [Internet] [doctoral]. Université de Batna 2; 2021 [cité 3 janv 2025]. Disponible sur: http://eprints.univ-batna2.dz/1941/
42. Application of lean Six Sigma methodology using DMAIC approach for the improvement of bogie assembly process in the railcar industry: Heliyon [Internet]. [cité 3 janv 2025]. Disponible sur: https://www.cell.com/heliyon/fulltext/S2405-8440(22)00331-0.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yasmine El Belghiti, Abdelfattah Mouloud, Mehdi El Bouchti , Samir Tetouani, Aziz Soulhi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.