Design of a Compact Microstrip Band Pass Filter for IoT and S-Band Radar Applications
DOI:
https://doi.org/10.56294/dm2025714Keywords:
group delay, ROSF, roll-off rate, specifications of BPF, types of resonators, VSWRAbstract
In this paper, the design, simulation and performance analysis of a compact micros trip bandpass filter (BPF) is presented for wireless communication, IoT, and radar systems. An open-loop square with two SIRS at the top of the resonator structure is designed for the filter, which is optimized to operate at the center frequency of 3.82 GHz within an external quality factor of 57.88. In terms of S-parameter results, the performance is good, with an insertion loss of 0.41 dB while a high return loss is achieved at 21.66.66 db. Such characteristics guarantee high selectivity and low signal distortion investigation at an upper band of 83.74dB /GHZ and a transition band is 0.269 GHz. The proposed BPF has transmission zero at 71.53dB at 4.427GHZ with a compact size of 18 mm × 18 mm.
References
1. F. Wei, Z.-J. Yang, P.-Y. Qin, Y. J. Guo, B. Li, and X.-W. Shi, "A balanced-to-balanced in-phase filtering power divider with high selectivity and isolation," IEEE Trans. Microw. Theory Tech., vol. 67, pp. 683–694, 2018.DOI: 10.1109/TMTT.2018.2880903
2. W. Feng, W. Che, and Q. Xue, "New balance-applications for dual-mode ring resonators in planar balanced circuits," IEEE Microw. Mag., vol. 28, pp. 15–23, 2019. DOI:10.1109/MMM.2019.2909519
3. Balalem, A. (2010). Analysis, design, optimization and realization of compact high performance printed RF filters (Doctoral dissertation, Magdeburg, Univ., Diss, 2010).
DOI: 10.25673/5031
4. M. Alqaisy, C. Chakrabraty, J. Ali, and A. R. Alhawari, “A miniature fractal-based dual-mode dual-band microstrip bandpass filter design,” International Journal of Microwave and Wireless Technologies, vol. 7, no. 2, pp. 127–133, 2015 DOI:10.1017/S1759078714000622
5. M. S. Razalli, A. Ismail, M. A. Mahdi, and M. N. bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Prog. Electromagn. Res., vol. 88, pp. 91–104, 2008.DOI: 10.2528/PIER08102303
6. A. R. Hartawan, T. Yunita, and L. O. Nur, “Band Pass Filter dengan metode Hairpin Resonator pada frekuensi X-Band,” TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika, vol. 2, no. 2, 2017.
DOI 10.25124/tektrika.v2i2.1679
7. T. Praludi, Y. Sulaeman, Y. Taryana, and B. E. Sukoco, "Bandpass filter microstrip using octagonal shape for S-band radar," in Proc. 2017 Int. Conf. Radar, Antenna, Microwave, Electronics, Telecommun. (ICRAMET), Oct. 2017, pp. 145–148.
DOI: 10.1109/ICRAMET.2017.8253164
8. B. George, N. S. Bhuvana, and S. K. Menon, "Compact band pass filter using triangular open loop resonator," in Proc. 2017 Progress Electromagn. Res. Symp. Fall (PIERS-FALL), Nov. 2017, pp. 757–760.DOI: 10.1109/PIERS-FALL.2017.8293236
9. R. A. Maulidini, M. R. Hidayat, and T. Praludi, "Band-pass filter microstrip at 3 GHz frequency using square open-loop resonator for S-band radar applications," Jurnal Elektron. Telekomun, vol. 20, no. 2, pp. 53–59, 2020.DOI: 10.14203/jet.v20.53-59
10. A. N. Ghazali, M. Sazid, and S. Pal, “A miniaturized low‐cost microstrip‐to‐coplanar waveguide transition‐based ultra‐wideband bandpass filter with multiple transmission zeros,” Microwave and Optical Technology Letters, vol. 62, no. 12, pp. 3662–3667, Dec. 2020, doi: 10.1002/mop.32482
11. B. Prasetya, Y. S. Rohmah, D. A. Nurmantris, S. Mulyawati, and R. Dipayana, "Band pass filter comparison of Hairpin line and square open-loop resonator method for digital TV community," Bull. Electr. Eng. Informatics, vol. 10, no. 1, pp. 101–110, 2021.DOI: 10.11591/eei.v10i1.2003
12. Q. Li et al., "Optimization and design of balanced BPF based on mixed electric and magnetic couplings," Electronics, vol. 12, no. 9, pp. 2125, 2023.DOI: 10.3390/electronics12092125
13. Q. K. Xu, Z. N. Zhang, X. H. Wu, J. Z. Wang, and L. Peng, "A compact S-band band-pass filter with ultra-wide stopband," Frequenz, vol. 77, no. 1–2, pp. 17–22, 2023.DOI: 10.1515/freq-2021-0278
14. P. Vryonides, S. Arain, A. Quddious, D. Psychogiou, and S. Nikolaou, "A new class of high-selectivity bandpass filters with constant bandwidth and 5:1 bandwidth tuning ratio," IEEE Access, vol. 12, pp. 2125, 2024.DOI: 10.1109/ACCESS.2024.3358677
15. X. Li, Y. Li, and X. Liu, "High-order dual-port quasi-absorptive microstrip coupled-line bandpass filters," IEEE Trans. Microwave Theory Tech., vol. 68, no. 4, pp. 1462–1475, 2019.DOI: 10.1109/TMTT.2019.2955692
16. D. Tang, C. Han, Z. Deng, H. J. Qian, and X. Luo, "Substrate-integrated defected ground structure for single-and dual-band bandpass filters with wide stopband and low radiation loss," IEEE Trans. Microwave Theory Tech, vol.69, no.1, pp.659–670, 2020.
DOI: 10.1109/TMTT.2020.3038202
17. Y. Zheng, Y. Zhu, Z. Wang, and Y. Dong, "Compact, wide stopband, shielded hybrid filter based on quarter-mode substrate integrated waveguide and microstrip line resonators," IEEE Microwave Wireless Compon. Lett., vol. 31, no. 3, pp. 245–248, 2021.DOI: 10.1109/LMWC.2020.3049048
18. Y. Liu, Y. Wu, S. Zhen, Y. Yang, W. Wang, and Q. Yang, "A sub-6 GHz and millimeter-wave IPD tri-band bandpass filter chip with wide stopband, high roll-off, and enhanced bandwidth," Microelectron. J., vol. 106527, 2024.DOI: 10.1016/j.mejo.2024.106527
19. Z. Li, X. Weng, X. Yi, K. Li, W. Duan, and M. Bi, "A broadband second-order bandpass frequency selective surface for microwave and millimeter wave application," Sci. Rep., vol. 14, no. 1, pp. 12040, 2024.DOI: 10.1038/s41598-024-62228-3
20. R. S. Elliott, An Introduction to Guided Waves and Microwave Circuits, 2nd ed., New Jersey: Prentice-Hall, 1993. https://doi.org/10.1007/978-981-4451-24-6
21. T. J. Bryant and A. Weiss, "Parameters of microstrip transmission lines and of coupled pairs of transmission lines," IEEE Trans. Microwave Theory Tech., vol. 16, no. 12, pp. 1021–1027, 1968.DOI: 10.1109/TMTT.1968.1126858
22.M. Mikimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design, and Application, vol. 4, Springer, 2013.DOI: 10.1007/978-3-662-04325-7
23. Huang, C-Y., "A high band isolation and wide bandstop diplexer using dual mode stepped impedance resonators," Progress In Electromagnetics Research, vol. 100, pp. 299–308, 2010.10.2528/PIER09112701
24. J. S. Hong and M. J. Lancaster, Microwave Filters for RF/Microwave Applications. New York: John Wiley& Sons, 2001. DOI:10.1002/0471221619
25. Hong, J. S., & Lancaster, M. J., "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques,vol.44,no.11,pp.2099–2109,1996. DOI10.1109/22.543968
26.M. G. Banciu, R. Ramer, and A. Ioachim, "Compact microstrip resonators for 900 MHz frequency band," IEEE Microwave and Wireless Components Letters, vol. 13, no. 5, pp. 175–177, May 2003.DOI: 10.1109/LMWC.2003.811673
27. C. Y. Huang, M. H. Weng, C. S. Ye, and Y. X. Xu, "A high band isolation and wide stopband diplexer using dual-mode stepped-impedance resonators," Prog. Electromagn. Res., vol. 100, pp. 299–308, 2010.DOI: 10.2528/PIER09112701
28. A. Balalem, J. Machac, and A. Omar, "Dual-band bandpass filter by using square-loop dual-mode resonator," Microwave Opt. Technol. Lett., vol. 50, no. 6, pp. 1567–1570, 2008.DOI: 10.1002/mop.23427
29. J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2nd ed., Wiley, 2011.DOI: 10.1002/9780470937297
30. T. C. Edwards and M. B. Steer, Foundations for Microstrip Circuit Design, 4th ed., Wiley, 2016.DOI: 10.1002/9781118936160
31. H. A. Hussein, Y. S. Mezaal, and B. M. Alameri, “Miniaturized microstrip diplexer based on FR4 substrate for wireless communications,” Elektronika Ir Elektrotechnika, vol. 27, no. 5, pp. 34–40, 2021, DOI: 10.5755/j02.eie.28984.
32. Y. S. Mezaal, S. K. Khaleel, B. M. Alameri, K. Al-Majdi, and A. A. Al-Hilali, “Miniaturized microstrip dual-channel diplexer based on modified meander line resonators for wireless and computer communication technologies,” Technologies, vol. 12, no. 5, p. 57, 2024, DOI: 10.3390/technologies12050057
33. F. Yousefi Moghadam, B. Afzali, F. Nadi, and R. Zallbeygi, "Compact low pass filter using sharp roll-off ultra-wide stopband T-shaped resonator," J. Electr. Comput. Eng. Innov., vol. 6, no. 1, pp. 25–31, 2017.DOI: 10.22061/jecei.2018.801
34. V. K. Velidi and S. Sanyal, "Sharp roll-off lowpass filter with wide stopband using stub-loaded coupled-line hairpin unit," IEEE Microwave Wireless Compon. Lett., vol. 21, no. 6, pp. 301–303, 2011.DOI: 10.1109/LMWC.2011.2132120
35. M. Hayati, H. Abbasi, and F. Shama, "Microstrip lowpass filter with ultrawide stopband and sharp roll-off," Arabian J. Sci. Eng., vol. 39, pp. 6249–6253, 2014.DOI: 10.1007/s13369-014-1237-x
36. T. K. Das, S. Chatterjee, S. K. A. Rahim, and T. K. Geok, "Compact high-selectivity wide stopband microstrip cross-coupled bandpass filter with spur line," IEEE Access, vol. 10, pp. 69866–69882, 2022.DOI: 10.1109/ACCESS.2022.3187408
37. Chen, C. J., "A coupled-line coupling structure for the design of quasi-elliptic bandpass filters," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 4, pp. 1921–1925, 2018. DOI:10.1109/TMTT.2017.2783378
38. D. M. Pozar, Microwave Engineering, 4th edit, DOI: 10.23919/URSIRSB.2012.7910095.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aqeel H. Al-Fatlawi, Seyed Sadra Kashef, Yaqeen Sabah Mezaal, Morteza Valizadeh (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.