Novel Key Generator-Based SqueezeNet Model and Hyperchaotic Map
DOI:
https://doi.org/10.56294/dm2025743Keywords:
Data Security, Cybersecurity, Deep Learning, Transfer Learning, SqueezeNet Model, Hyperchaotic MapAbstract
Cybersecurity threats are evolving at a very high rate, thus requiring the use of new methods to enhance the encryption of data and the communication process. In this paper, we propose a new key generation algorithm using the simultaneous use of the SqueezeNet deep learning model and hyperchaotic map to improve the hallmark of cryptographic security. The method employed in the proposed approach is built around the SqueezeNet model, which is lighter and faster in extracting features from the input image, and a hyperchaotic map, which is the main source of dynamic and non-trivial keys. The hyperchaotic map enhances complexity and randomness, securing the new cryptosystem against brute force and statistical attacks, and the key length depends on the number of features in the image. All our experiments prove that the proposed key generator works well in generating long, random, high entropy keys and is highly resistant to all typical cryptographic attacks. The promising profound synergy of deep learning and chaotic systems provides directions for the development of secure and effective methods of cryptography amid the exacerbated cyber threats. The technique was found to meet all the 15 criteria as tested through the NIST statistical test suite.
References
[1] J. Ye, R. Zhang, M. Zhong, and Z. Zhang, “Design of Data Encryption and Compression Methods,” Procedia Comput. Sci., vol. 243, pp. 1257–1264, 2024, doi: 10.1016/j.procs.2024.09.148.
[2] S. E. Vadakkethil Somanathan Pillai and K. Polimetla, “Analyzing the Impact of Quantum Cryptography on Network Security,” in 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India: IEEE, Feb. 2024, pp. 1–6. doi: 10.1109/ICICACS60521.2024.10498417.
[3] H. Najm, M. S. Mahdi, and W. R. Abdulhussien, “Lightweight Image Encryption Using Chacha20 and Serpent Algorithm,” J. Internet Serv. Inf. Secur., vol. 14, no. 4, pp. 436–449, Nov. 2024, doi: 10.58346/JISIS.2024.I4.027.
[4] M. F. Siddique, Z. Ahmad, N. Ullah, S. Ullah, and J.-M. Kim, “Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework,” Sensors, vol. 24, no. 12, p. 4009, Jun. 2024, doi: 10.3390/s24124009.
[5] M. S. Al-Batah, M. S. Alzboon, M. Alzyoud, and N. Al-Shanableh, “Enhancing Image Cryptography Performance with Block Left Rotation Operations,” Appl. Comput. Intell. Soft Comput., vol. 2024, no. 1, p. 3641927, Jan. 2024, doi: 10.1155/2024/3641927.
[6] O. Kuznetsov, N. Poluyanenko, E. Frontoni, and S. Kandiy, “Enhancing Smart Communication Security: A Novel Cost Function for Efficient S-Box Generation in Symmetric Key Cryptography,” Cryptography, vol. 8, no. 2, p. 17, Apr. 2024, doi: 10.3390/cryptography8020017.
[7] Mohd. Sadim, N. Pratap, S. Kumar, and A. Latoria, “WITHDRAWN: Hybrid neural synchronization blowfish algorithm for secret key exchange over public channels,” Mater. Today Proc., p. S2214785320389811, Jan. 2021, doi: 10.1016/j.matpr.2020.11.363.
[8] S. Rana, M. R. H. Mondal, and A. H. M. S. Parvez, “A New Key Generation Technique based on Neural Networks for Lightweight Block Ciphers,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, 2021, doi: 10.14569/IJACSA.2021.0120623.
[9] A. Kadir, M. S. Azzaz, and R. Kaibou, “Chaos-based Key Generator using Artificial Neural Networks Models,” in 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), BLIDA, Algeria: IEEE, Mar. 2023, pp. 1–5. doi: 10.1109/ICAECCS56710.2023.10105105.
[10] Y. Alloun, M. S. Azzaz, A. Kifouche, and R. Kaibou, “Pseudo Random Number Generator Based on Chaos Theory and Artificial Neural Networks,” in 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE), Constantine, Algeria: IEEE, Oct. 2022, pp. 1–6. doi: 10.1109/ICAEE53772.2022.9962090.
[11] H. Najm, H. K. Hoomod, and R. Hassan, “A New WoT Cryptography Algorithm Based on GOST and Novel 5d Chaotic System,” Int. J. Interact. Mob. Technol. IJIM, vol. 15, no. 02, p. 184, Jan. 2021, doi: 10.3991/ijim.v15i02.19961.
[12] H. Najm, H. K. Hoomod, and R. Hassan, “A proposed hybrid cryptography algorithm based on GOST and salsa (20),” Period. Eng. Nat. Sci. PEN, vol. 8, no. 3, pp. 1829–1835, 2020. doi:10.21533/PEN.V8I3.1619
[13] Raghad Abdulaali Azeez, Abeer Salim Jamil, and Mohammed Salih Mahdi, “A Partial Face Encryption in Real World Experiences Based on Features Extraction from Edge Detection,” Int. J. Interact. Mob. Technol. IJIM, vol. 17, no. 07, pp. 69–81, Apr. 2023, doi: 10.3991/ijim.v17i07.38753.
[14] M. S. Mahdi, N. F. Hassan, and G. H. Abdul-Majeed, “An improved chacha algorithm for securing data on IoT devices,” SN Appl. Sci., vol. 3, no. 4, p. 429, Apr. 2021, doi: 10.1007/s42452-021-04425-7.
[15] T. O. Oladoyinbo, O. B. Oladoyinbo, and A. I. Akinkunmi, “The Importance Of Data Encryption Algorithm In Data Security”. http://doi.org/10.36893/JNAO.2022.V13I02.001-011
[16] A. F. Majeed, P. Salehpour, L. Farzinvash, and S. Pashazadeh, “Multi-Class Brain Lesion Classification Using Deep Transfer Learning With MobileNetV3,” IEEE Access, vol. 12, pp. 155295–155308, 2024, doi: 10.1109/ACCESS.2024.3413008.
[17] N. F. Hassan, A . Al-Adhami and M. S. Mahdi, “Digital Speech Files Encryption based on Hénon and Gingerbread Chaotic Maps” Iraqi Journal of Science (2022): 830-842, doi: https://doi.org/10.24996/ijs.2022.63.2.36 .
[18] M. A. Taha, S. A. A. A. Alsaidi, and R. A. Hussein, “Machine Learning Techniques for Predicting Heart Diseases,” in 2022 International Symposium on iNnovative Informatics of Biskra (ISNIB), Biskra, Algeria: IEEE, Dec. 2022, pp. 1–6. doi: 10.1109/ISNIB57382.2022.10076238.
[19] H. M. Al-Dabbas and Mohammed Salih, “Classification of Brain Tumor Diseases Using Data Augmentation and Transfer Learning,” Iraqi J. Sci., pp. 2275–2286, Apr. 2024, doi: 10.24996/ijs.2024.65.4.41.
[20] M. Laurer, W. Van Atteveldt, A. Casas, and K. Welbers, “Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI,” Polit. Anal., vol. 32, no. 1, pp. 84–100, Jan. 2024, doi: 10.1017/pan.2023.20.
[21] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-00444-8.
[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” Nov. 04, 2016, arXiv: arXiv:1602.07360. doi: 10.48550/arXiv.1602.07360.
[23] M. Fatima et al., “Two-Stage Intelligent DarkNet-SqueezeNet Architecture-Based Framework for Multiclass Rice Grain Variety Identification,” Comput. Intell. Neurosci., vol. 2022, pp. 1–13, Nov. 2022, doi: 10.1155/2022/1339469.
[24] Y. M. Abid et al., “Development of an intelligent controller for sports training system based on FPGA,” J. Intell. Syst., vol. 32, no. 1, p. 20220260, Aug. 2023, doi: 10.1515/jisys-2022-0260.
[25] S. Jameer and H. Syed, “Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors,” Sensors, vol. 23, no. 9, p. 4319, Apr. 2023, doi: 10.3390/s23094319.
[26] M. Khalaf, H. Najm, A. A. Daleh, A. Hasan Munef, and G. Mojib, “Schema Matching Using Word-level Clustering for Integrating Universities’ Courses,” in 2020 2nd Al-Noor International Conference for Science and Technology (NICST), Baku, Azerbaijan: IEEE, Aug. 2020, pp. 1–6. doi: 10.1109/NICST50904.2020.9280318.
[27] A. Ahmed, “Pre-trained CNNs Models for Content based Image Retrieval,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 7, 2021, doi: 10.14569/IJACSA.2021.0120723.
[28] Abd Aliwie, A. N. (2025). Conversational Silence in Harold Pinter’s The Birthday Party: A Pragmatic Perspective. International Journal of Arabic-English Studies. https://doi.org/10.33806/ijaes.v25i2.860
[29] Faculty of Computer Sciences, Department of Computer Science, Lahore Garrison University, DHA phase 6, Lahore 54000, Pakistan et al., “Brain Tumor Detection Enhanced with Transfer Learning using SqueezeNet,” Decis. Mak. Adv., vol. 2, no. 1, pp. 129–141, Apr. 2024, doi: 10.31181/dma21202432.
[30] R. Kait and K. University, “Enhancing Fog Computing Performance with SqueezeNet Approach for IoT Applications”. doi:10.1109/ICACCTech65084.2024.00114.
[31] Y. N.-E. Aine and C. Leghris, “Secure IoT Seed-based Matrix Key Generator,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, 2024, doi: 10.14569/IJACSA.2024.01503108.
[32] A. Yousif and A. H. Kashmar, “Key Generator to Encryption Images Based on Chaotic Maps,” vol. 60, 2019. doi: 10.24996/ijs.2019.60.2.16
[33] M. S. Mahdi, R. A. Azeez, and N. F. Hassan, “A proposed lightweight image encryption using ChaCha with hyperchaotic maps,” vol. 8, no. 4, 2020.doi: 10.21533/PEN.V8I4.1708.G696.
[34] H. Ansaf, H. Najm, J. M. Atiyah, and O. A. Hassen, “Improved Approach for Identification of Real and Fake Smile using Chaos Theory and Principal Component Analysis,” J. Southwest Jiaotong Univ., vol. 54, no. 5, 2019. https://doi.org/10.35741/issn.0258-2724.54.5.20.
[35] H. R. Mahmood, D. K. Gharkan, G. I. Jamil, A. A. Jaish, and S. T. Yahya, “Eye Movement Classification using Feature Engineering and Ensemble Machine Learning,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 6, pp. 18509–18517, Dec. 2024, doi: 10.48084/etasr.9115.
[36] D. K. Ghurkan and A. A. Abdulrahman, “Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV,” in 2022 Iraqi International Conference on Communication and Information Technologies (IICCIT), Basrah, Iraq: IEEE, Sep. 2022, pp. 120–124. doi: 10.1109/IICCIT55816.2022.10010645.
[37] E. H. Hassan, A. H. Ali, R. M. Shehab, M. S. Mahdi, and W. A. Abd Alrida, “Mask Laws to study Texture Features of the Kidney Infection,” Iraqi J. Sci., pp. 2261–2270, May 2023, doi: 10.24996/ijs.2023.64.5.14.
[38] E. H. Hassan, A. H. Ali, R. M. Shehab, W. A. A. Alrida, and M. S. Mahdi, “Using K-mean Clustering to
Classify the Kidney Images,” Iraqi J. Sci., pp. 2070–2084, Apr. 2023, doi: 10.24996/ijs.2023.64.4.41.
[39] C. Li, J. C. Sprott, W. Thio, and H. Zhu, “A New Piecewise Linear Hyperchaotic Circuit,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 61, no. 12, pp. 977–981, Dec. 2014, doi: 10.1109/TCSII.2014.2356912.
[40] Bakri, Bilal Ibrahim, Yaser M. Abid, Ghaidaa Ahmed Ali, Mohammed Salih Mahdi, Alaa Hamza Omran, Mustafa Musa Jaber, Mustafa A. Jalil, and Roula AJ Kadhim. "USING DEEP LEARNING TO DESIGN AN INTELLIGENT CONTROLLER FOR STREET LIGHTING AND POWER CONSUMPTION." Eastern-European Journal of Enterprise Technologies 117, no. 8 (2022), doi: 10.15587/1729-4061.2022.260077.
[41] Alsudani, Munther Abdul Ameer. "Self-organizing control for telecommunication networks 5G." In AIP Conference Proceedings, vol. 2591, no. 1. AIP Publishing, 2023., doi: 10.1063/5.0119566.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hayder Najm, Mohammed Salih Mahdi, Sanaa Mohsin (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.