Design and Comparison of Controllers for a Robotic Transfemoral Prosthesis

Authors

DOI:

https://doi.org/10.56294/dm2025759

Keywords:

Proportinal-Derivative (PD) Controller, Linear Quadratic Regulator (LQR) Controller, Two Degrees of Freedom Controller, Transfemoral Prothesis

Abstract

This study investigates the performance of four control strategies—Proportional-Derivative (PD), Feedforward-Feedback PD (FF-FB PD), Linear Quadratic Regulator (LQR), and Feedforward-Feedback LQR (FF-FB LQR)—implemented on a robotic transfemoral prosthesis. The performance metrics, including overshoot, settling time, trajectory tracking accuracy, and torque requirements, were evaluated using simulation models. The results indicate that the FF-FB LQR controller demonstrated superior performance, achieving the lowest overshoot (4.98%) and near-zero trajectory tracking error. All controllers required approximately 8.6 Nm of torque, suggesting consistent energy requirements across strategies despite their performance differences. The LQR controller exhibited the best stability, minimizing overshoot and improving overall system response. These findings highlight the advantages of feedforward-feedback control strategies, particularly the FF-FB LQR, for controlling robotic transfemoral prostheses with enhanced stability and accuracy.

References

1. Consejo Nacional para la Igualdad de Discapacidades-CONADlS. Registro Nacional de Discapacidades. Total de personas con discapacidad registradas. 2023.

2. (WHO) World Health Organization. Assistive devices and prosthetics: World report on disability. 2019.

3. Pozo G. Evaluación Pre y Post Protésica en Pacientes de la Fundación Imbabura. Universidad Técnica del Norte; 2020.

4. Benavidez A, Molina R. Estrategias de Evaluación para la Amputación Transfemoral: Revisión Sistemática. 2020.

5. Azimi V, Shu T, Zhao H, Gehlhar R, Simon D, Ames A. Model-Based Adaptive Control of Transfemoral Prostheses: Theory, Simulation, and Experiments. IEEE Trans Syst Man Cybern Syst. 2019;51:1174–91.

6. Gao X, Si J, Wen Y, Li M, Huang H. Knowledge-Guided Reinforcement Learning Control for Robotic Lower Limb Prosthesis. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. p. 754–60.

7. Lawson B, Mitchell JE, Truex D, Shultz A, Ledoux ED, Goldfarb M. A Robotic Leg Prosthesis: Design, Control, and Implementation. IEEE Robot Autom Mag. 2014;21:70–81.

8. Zhao H, Horn J, Reher J, Paredes V, Ames A. First steps toward translating robotic walking to prostheses: a nonlinear optimization based control approach. Auton Robots. 2017;41:725–42.

9. Zhao H, Reher J, Horn J, Paredes V, Ames A. Realization of nonlinear real-time optimization based controllers on self-contained transfemoral prosthesis. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems. 2015.

10. Bavarsad A, Fakharian A, Menhaj M. Optimal Sliding Mode Controller for an Active Transfemoral Prosthesis Using State-Dependent Riccati Equation Approach. Arab J Sci Eng. 2020;1–14.

11. Azimi V, Simon D, Richter H, Fakoorian S. Robust composite adaptive transfemoral prosthesis control with non-scalar boundary layer trajectories. In: American Control Conference (ACC). 2016. p. 3002–7.

12. Gao S, Wang C, Zhu J, Mai J, Wang Q. Hydraulic Damping and Swing Assistance Control of A Robotic Electrohydraulic Transfemoral Prosthesis: Preliminary Results. 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO). 2019;365–8.

13. Sup F, Bohara A, Goldfarb M. Design and Control of a Powered Transfemoral Prosthesis. Int J Rob Res. 2008;27:263–73.

14. Azimi V, Shu T, Zhao H, Gehlhar R, Simon D, Ames A. Model-Based Adaptive Control of Transfemoral Prostheses: Theory, Simulation, and Experiments. IEEE Trans Syst Man Cybern Syst. 2019;51:1174–91.

15. Bavarsad A, Fakharian A, Menhaj M. A nonlinear robust optimal controller for an active transfemoral prosthesis: An estimator-based state-dependent Riccati equation approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2020;235:313–29.

16. Azimi V, Fakoorian S, Nguyen T, Simon D. Robust Adaptive Impedance Control With Application to a Transfemoral Prosthesis and Test Robot. J Dyn Syst Meas Control. 2018;

17. Laschowski B, Andrysek J. Electromechanical Design of Robotic Transfemoral Prostheses. Volume 5A: 42nd Mechanisms and Robotics Conference. 2018;

18. Richter H, Simon D, Smith WA, Samorezov S. Dynamic Modeling, Parameter Estimation and Control of a Leg Prosthesis Test Robot. Appl Math Model. 2015;39:559–73.

19. Richter H, Hui X, Bogert AJ, Simon D. Semiactive virtual control of a hydraulic prosthetic knee. 2016 IEEE Conference on Control Applications (CCA). 2016;422–9.

20. Parri A, Martini E, Geeroms J, Flynn L, Pasquini G, Crea S, et al. Whole Body Awareness for Controlling a Robotic Transfemoral Prosthesis. Front Neurorobot. 2017;11.

21. Sun X, Sugai F, Okada K, Inaba M. Design and Control of a Novel Robotic Knee-Ankle Prosthesis System. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). 2018;737–43.

22. Ingenierure Verein Deutscher. Entwicklungsmethodik für mechatronische Systeme Design methodology for mechatronic systems VDI 2206. Design. 2004. 118 p.

23. Vergara S, Mosquera Canchingre G, Bonilla V, Rueda-Ayala C, Hidalgo L. Diseño mecánico de una prótesis transfemoral. Avances y desafíos en las ciencias y la ingeniería 2023: nuevos conocimientos para un futuro sostenible [Internet]. 2023 [cited 2024 Sep 25];122. Available from: https://www.researchgate.net/profile/Hector-Rojas-14/publication/373762565_Bioeconomia_y_desarrollo_territorial_en_Narino_Tolima_Guajira_y_Bogota-Region_aproximacion_desde_la_triple_helice/links/653f0c253cc79d48c5ba020e/Bioeconomia-y-desarrollo-territorial-en-Narino-Tolima-Guajira-y-Bogota-Region-aproximacion-desde-la-triple-helice.pdf#page=122

24. Astrom KJ, Murray RM. Feedback systems: An introduction for scientists and engineers [Internet]. Princeton, NJ: Princeton University Press; 2012. Available from: https://consensus.app/papers/feedback-systems-introduction-scientists-engineers-karl-astrom/8ccfef64d31bcd563c7637ecfcb88e69/?utm_source=chatgpt

25. Nise NS. Control systems engineering [Internet]. 6th ed. Hoboken, NJ: Wiley; 2011. Available from: https://consensus.app/papers/control-systems-engineering-norman-s-nise/60348f7fbfa674120c9cb39c5e7335e3/?utm_source=chatgpt

26. Anderson BDO, Moore JB. Optimal control: Linear quadratic methods [Internet]. Mineola, NY: Dover Publications; 2007. Available from: https://consensus.app/papers/optimal-control-linear-quadratic-methods-anderson/b77d422ae8be79940ffcbace35d44ec5/?utm_source=chatgpt

27. Franklin GF, Powell JD, Emami-Naeini A. Feedback control of dynamic systems [Internet]. 8th ed. Upper Saddle River, NJ: Pearson; 2019. Available from: https://consensus.app/papers/feedback-control-dynamic-systems-franklin/70fb517e98a5a57b8dc89ad580f6c785/?utm_source=chatgpt

Downloads

Published

2025-03-28

Issue

Section

Original

How to Cite

1.
Mosquera G, Bonilla V, Vergara S, Rueda C, Moya M. Design and Comparison of Controllers for a Robotic Transfemoral Prosthesis. Data and Metadata [Internet]. 2025 Mar. 28 [cited 2025 Apr. 27];4:759. Available from: https://dm.ageditor.ar/index.php/dm/article/view/759