Determining the Predominant Materials for Triboelectric Nanogenerator Fabrication: A Bibliometric and a Systematic Analysis

Authors

DOI:

https://doi.org/10.56294/dm2025764

Keywords:

Triboelectric nanogenerator, material selection, bibliometric analysis, energy harvesting, co-occurrence network

Abstract

Introduction: Triboelectric Nanogenerators (TENGs) have gained considerable attention as efficient energy-harvesting devices based on the triboelectric effect and electrostatic induction. Their performance is highly dependent on the materials used, which influence charged generation efficiency, durability, and application potential. Despite significant advancements in material design, a comprehensive analysis of the most frequently used materials and their impact on output performance remains limited.
Methods: A bibliometric and systematic review was conducted to identify the predominant materials in TENG fabrication. Data was collected from Scopus and Web of Science, analyzing publication trends, material co-occurrence, and performance metrics. A co-occurrence network analysis was performed using VOSviewer, and experimental studies were systematically reviewed to evaluate the correlation between material selection and output voltage (Voc). 
Results: The analysis revealed that PTFE, FEP, PVDF, PDMS, and carbon-based nanomaterials are the most frequently utilized materials due to their high triboelectric polarity and electrical stability. The highest reported Voc values exceeded 400 V, with hybrid materials, nanostructured interfaces, and electrode engineering significantly enhancing TENG performance. Additionally, China, the United States, and South Korea were identified as the leading contributors to TENG research.
Conclusions: This study quantitatively assesses TENG material trends and their impact on electrical performance. The findings offer valuable insights for researchers and engineers working on next-generation TENGs, facilitating the optimization of material selection for self-powered devices and large-scale energy harvesting applications.

References

1. Li D, Ruan L, Sun J, Wu C, Yan Z, Lin J, et al. Facile growth of aluminum oxide thin film by chemical liquid deposition and its application in devices. Nanotechnol Rev. 2020 Sep 10;9(1):876–85.

2. Guerra J, Collaguazo G. Development of Low-Cost Triboelectric Nanogenerators for Rural Communities in Ecuador. In 2024. p. 45–53. DOI: https://doi.org/10.1007/978-3-031-70760-5_4

3. Collaguazo G, Guerra J, Guatemal W. Electric generation from hydraulic fluctuations using piezoelectric ceramics. In: 2022 IEEE Sixth Ecuador Technical Chapters Meeting (ETCM). IEEE; 2022. p. 1–5. DOI: https://doi.org/10.1109/ETCM56276.2022.9935741

4. Akram W, Chen Q, Xia G, Fang J. A review of single electrode triboelectric nanogenerators. Nano Energy. 2023 Feb;106:108043. DOI: https://doi.org/10.1016/j.nanoen.2022.108043

5. Liu H, Yan F, Jin Y, Liu W, Chen H, Kong F. Hydrodynamic and Energy Capture Properties of a Cylindrical Triboelectric Nanogenerator for Ocean Buoy. Applied Sciences. 2021 Mar 30;11(7):3076.

6. Liu S, Liu X, Zhou G, Qin F, Jing M, Li L, et al. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nat Commun. 2020 Dec 2;11(1):6158.

7. Li D, Ruan L, Sun J, Wu C, Yan Z, Lin J, et al. Facile growth of aluminum oxide thin film by chemical liquid deposition and its application in devices. Nanotechnol Rev. 2020 Sep 10;9(1):876–85.

8. Tan J, Fan Z, Sun S, Xu M, Jiang D. A Periodic Wetting Surface Driven by Triboelectric Nanogenerator for Efficient Postimpact Droplet Collection. Adv Mater Interfaces. 2023 Jan 20;10(2). DOI: https://doi.org/10.1002/admi.202202037

9. Phogaat R, Yepuri V. Performance enhancement of triboelectric nanogenerator using iodine doped PVDF. Nanosystems: Physics, Chemistry, Mathematics. 2023 Feb 28;14(1):69–73. DOI: https://doi.org/10.17586/2220-8054-2023-14-1-69-73

10. Liu H, Yan F, Jin Y, Liu W, Chen H, Kong F. Hydrodynamic and Energy Capture Properties of a Cylindrical Triboelectric Nanogenerator for Ocean Buoy. Applied Sciences. 2021 Mar 30;11(7):3076.

11. Liu S, Liu X, Zhou G, Qin F, Jing M, Li L, et al. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nat Commun. 2020 Dec 2;11(1):6158. DOI: https://doi.org/10.1038/s41467-020-19987-0

12. Li D, Ruan L, Sun J, Wu C, Yan Z, Lin J, et al. Facile growth of aluminum oxide thin film by chemical liquid deposition and its application in devices. Nanotechnol Rev. 2020 Sep 10;9(1):876–85. DOI: https://doi.org/10.1515/ntrev-2020-0062

13. La M, Choi JH, Choi JY, Hwang TY, Kang J, Choi D. Development of the Triboelectric Nanogenerator Using a Metal-to-Metal Imprinting Process for Improved Electrical Output. Micromachines (Basel). 2018 Oct 27;9(11):551. DOI: https://doi.org/10.3390/mi9110551

14. Yang B, Yao C, Yu Y, Li Z, Wang X. Nature Degradable, Flexible, and Transparent Conductive Substrates from Green and Earth-Abundant Materials. Sci Rep. 2017 Jul 10;7(1):4936. DOI: https://doi.org/10.1038/s41598-017-04969-y

15. Kim D, Lee HM, Choi YK. Large-sized sandpaper coated with solution-processed aluminum for a triboelectric nanogenerator with reliable durability. RSC Adv. 2017;7(1):137–44. DOI: https://doi.org/10.1039/C6RA26677K

16. Yang R, Qin Y, Li C, Dai L, Wang ZL. Characteristics of output voltage and current of integrated nanogenerators. Appl Phys Lett. 2009 Jan 12;94(2). DOI: https://doi.org/10.1063/1.3072362

17. Cheng G, Lin Z, Du Z, Wang ZL. Increase Output Energy and Operation Frequency of a Triboelectric Nanogenerator by Two Grounded Electrodes Approach. Adv Funct Mater. 2014 May 22;24(19):2892–8. DOI: https://doi.org/10.1002/adfm.201303659

18. Liu H, Yan F, Jin Y, Liu W, Chen H, Kong F. Hydrodynamic and Energy Capture Properties of a Cylindrical Triboelectric Nanogenerator for Ocean Buoy. Applied Sciences. 2021 Mar 30;11(7):3076. DOI: https://doi.org/10.3390/app11073076

19. Chung J, Yong H, Moon H, Duong Q Van, Choi ST, Kim D, et al. Hand‐Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices. Advanced Science. 2018 Nov 27;5(11). DOI: https://doi.org/10.1002/advs.201801054

20. Chen T, Shi Q, Li K, Yang Z, Liu H, Sun L, et al. Investigation of Position Sensing and Energy Harvesting of a Flexible Triboelectric Touch Pad. Nanomaterials. 2018 Aug 13;8(8):613. DOI: https://doi.org/10.3390/nano8080613

21. Ahmed A, Hassan I, Ibn-Mohammed T, Mostafa H, Reaney IM, Koh LSC, et al. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ Sci. 2017;10(3):653–71. DOI: https://doi.org/10.1039/C7EE00158D

22. Bian Y, Jiang T, Xiao T, Gong W, Cao X, Wang Z, et al. Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel. Adv Mater Technol. 2018 Mar 10;3(3). DOI: https://doi.org/10.1002/admt.201700317

23. Yu A, Chen X, Wang R, Liu J, Luo J, Chen L, et al. Triboelectric Nanogenerator as a Self-Powered Communication Unit for Processing and Transmitting Information. ACS Nano. 2016 Apr 26;10(4):3944–50. DOI: https://doi.org/10.1021/acsnano.5b07407

24. Xiong Y, Wang Y, Zhang J, Zheng L, Liu Y, Jiao H, et al. Endowing TENGs with sequential logic. Device. 2024 Oct;2(10):100472. DOI: https://doi.org/10.1016/j.device.2024.100472

25. Xu Z, Chang Y, Zhu Z. A Triboelectric Nanogenerator Based on Bamboo Leaf for Biomechanical Energy Harvesting and Self-Powered Touch Sensing. Electronics (Basel). 2024 Feb 15;13(4):766. DOI: https://doi.org/10.3390/electronics13040766

26. Liang Q, Yan X, Gu Y, Zhang K, Liang M, Lu S, et al. Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Sci Rep. 2015 Mar 13;5(1):9080. DOI: https://doi.org/10.1038/srep09080

27. Zheng L, Lin ZH, Cheng G, Wu W, Wen X, Lee S, et al. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy. 2014 Oct;9:291–300. DOI: https://doi.org/10.1016/j.nanoen.2014.07.024

28. Yang P, Shi Y, Tao X, Liu Z, Dong X, Wang ZL, et al. Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator. Matter. 2023 Apr;6(4):1295–311. DOI: https://doi.org/10.1016/j.matt.2023.02.006

29. Cui N, Wu W, Zhao Y, Bai S, Meng L, Qin Y, et al. Magnetic Force Driven Nanogenerators as a Noncontact Energy Harvester and Sensor. Nano Lett. 2012 Jul 11;12(7):3701–5. DOI: https://doi.org/10.1021/nl301490q

30. Du X, Zhang H, Cao H, Hao Z, Nakashima T, Tanaka Y, et al. Double-Swing Spring Origami Triboelectric Nanogenerators for Self-Powered Ocean Monitoring. Energies (Basel). 2024 Jun 17;17(12):2981. DOI: https://doi.org/10.3390/en17122981

31. Xu T, Ye J, Tan J. Unravelling the Ageing Effects of PDMS‐Based Triboelectric Nanogenerators. Adv Mater Interfaces. 2024 Jul 21;11(19).

32. Luo J, Lu W, Jang D, Zhang Q, Meng W, Wells A, et al. Millifluidic Nanogenerator Lab‐on‐a‐Chip Device for Blood Electrical Conductivity Monitoring at Low Frequency. Advanced Materials. 2024 Aug 6;36(32). DOI: https://doi.org/10.1002/adma.202403568

33. Rotary Triboelectric Nanogenerators as a Wind Energy Harvester. International Journal of Recent Technology and Engineering. 2019 Sep 5;8(2S7):321–7. DOI: https://doi.org/10.35940/ijrte.B1119.0782S719

34. Li L, Zhang J, Wang M, Zhang J, Zeng XF, Wang JX, et al. Electrospun hydrolyzed collagen from tanned leather shavings for bio-triboelectric nanogenerators. Mater Adv. 2022;3(12):5080–6. DOI: https://doi.org/10.1039/D2MA00457G

35. Mallineni SSK, Dong Y, Behlow H, Rao AM, Podila R. A Wireless Triboelectric Nanogenerator. Adv Energy Mater. 2018 Apr 4;8(10). DOI: https://doi.org/10.1002/aenm.201702736

36. Yao C, Hernandez A, Yu Y, Cai Z, Wang X. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy. 2016 Dec;30:103–8. DOI: https://doi.org/10.1016/j.nanoen.2016.09.036

37. Mathew AA, Shanmugasundaram V. Single-Electrode Triboelectric Nanogenerator Device Framework for Wrist Pulse Signal (Nadi) Analysis and Disease Detection. IEEE Access. 2024;12:93531–45. DOI: https://doi.org/10.1109/ACCESS.2024.3423401

38. Jannesari M, Ejehi F, English NJ, Mohammadpour R, Akhavan O, Shams S. Triggering triboelectric nanogenerator antibacterial Activities: Effect of charge polarity and host material correlation. Chemical Engineering Journal. 2024 Apr;486:150036.

39. Ajani Lakmini Jayarathna JA, Hajra S, Panda S, Chamanehpour E, Sulania I, Singh Goyat M, et al. Exploring potential of MXenes in smart sensing and energy harvesting. Mater Lett. 2024 May;363:136252. DOI: https://doi.org/10.1016/j.matlet.2024.136252

40. Jannesari M, Ejehi F, English NJ, Mohammadpour R, Akhavan O, Shams S. Triggering triboelectric nanogenerator antibacterial Activities: Effect of charge polarity and host material correlation. Chemical Engineering Journal. 2024 Apr;486:150036. DOI: https://doi.org/10.1016/j.cej.2024.150036

41. Li K, Han L, Zhang J, Cheng J. Metal‐Organic Framework Derived Multidimensional Carbon/Multifluorination Epoxy Nanocomposite with Electromagnetic Wave Absorption, Environmentally Adaptive, and Blue Energy Harvesting. Small Struct. 2023 Nov 23;4(11). DOI: https://doi.org/10.1002/sstr.202300210

42. Vafaiee M, Ejehi F, Mohammadpour R. CNT-PDMS foams as self-powered humidity sensors based on triboelectric nanogenerators driven by finger tapping. Sci Rep. 2023 Jan 7;13(1):370. DOI: https://doi.org/10.1038/s41598-023-27690-5

43. Luo H, Du J, Yang P, Shi Y, Liu Z, Yang D, et al. Human–Machine Interaction via Dual Modes of Voice and Gesture Enabled by Triboelectric Nanogenerator and Machine Learning. ACS Appl Mater Interfaces. 2023 Apr 5;15(13):17009–18. DOI: https://doi.org/10.1021/acsami.3c00566

44. Gao Y, Li Z, Xu B, Li M, Jiang C, Guan X, et al. Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy. 2022 Jan;91:106672. DOI: https://doi.org/10.1016/j.nanoen.2021.106672

45. Zhu J, Wang A, Hu H, Zhu H. Hybrid Electromagnetic and Triboelectric Nanogenerators with Multi-Impact for Wideband Frequency Energy Harvesting. Energies (Basel). 2017 Dec 1;10(12):2024. DOI: https://doi.org/10.3390/en10122024

46. Zhai C, Chou X, He J, Song L, Zhang Z, Wen T, et al. An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators. Appl Energy. 2018 Dec;231:1346–53. DOI: https://doi.org/10.1016/j.apenergy.2018.09.120

47. Wang J, Wu C, Dai Y, Zhao Z, Wang A, Zhang T, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun. 2017 Jul 20;8(1):88. DOI: https://doi.org/10.1038/s41467-017-00131-4

48. Wen Z, Yeh MH, Guo H, Wang J, Zi Y, Xu W, et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv. 2016 Oct 7;2(10). DOI: https://doi.org/10.1126/sciadv.1600097

49. Xia X, Zi Y. Heat‐Excitation‐Based Triboelectric Charge Promotion Strategy. Advanced Science. 2024 Nov 14;11(41). DOI: https://doi.org/10.1002/advs.202404489

50. Bagchi B, Datta P, Fernandez CS, Gupta P, Jaufuraully S, David AL, et al. Flexible triboelectric nanogenerators using transparent copper nanowire electrodes: energy harvesting, sensing human activities and material recognition. Mater Horiz. 2023;10(8):3124–34. DOI: https://doi.org/10.1039/D3MH00404J

51. Nguyen TH, Ahn KK. The Effect of a Magnetic Field on Solid–Liquid Contact Electrification for Streaming Flow Energy Harvesting. Energies (Basel). 2023 Jun 18;16(12):4779. DOI: https://doi.org/10.3390/en16124779

52. Liu C, Shimane R, Deng M. Operator-Based Triboelectric Nanogenerator Power Management and Output Voltage Control. Micromachines (Basel). 2024 Aug 31;15(9):1114. DOI: https://doi.org/10.3390/mi15091114

53. Shen F, Zhang Q, Guo H, Cao C, Gong Y, Wang J, et al. Investigation of Power Density Amplification in Stacked Triboelectric Nanogenerators. ENERGY & ENVIRONMENTAL MATERIALS. 2024 Sep 22;7(5). DOI: https://doi.org/10.1002/eem2.12697

54. Ahmed A, Hassan I, Song P, Gamaleldin M, Radhi A, Panwar N, et al. Self-adaptive Bioinspired Hummingbird-wing Stimulated Triboelectric Nanogenerators. Sci Rep. 2017 Dec 7;7(1):17143. DOI: https://doi.org/10.1038/s41598-017-17453-4

55. Guo H, Pu X, Chen J, Meng Y, Yeh MH, Liu G, et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci Robot. 2018 Jul 25;3(20). DOI: https://doi.org/10.1126/scirobotics.aat2516

56. Li X, Tao J, Zhu J, Pan C. A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. APL Mater. 2017 Jul 1;5(7). DOI: https://doi.org/10.1063/1.4977216

57. Jiang T, Tang W, Chen X, Bao Han C, Lin L, Zi Y, et al. Figures‐of‐Merit for Rolling‐Friction‐Based Triboelectric Nanogenerators. Adv Mater Technol. 2016 Apr 6;1(1). DOI: https://doi.org/10.1002/admt.201600017

58. Nan Y, Wang X, Xu H, Zhou H, Sun Y, Wang M, et al. Submerged and completely open solid–liquid triboelectric nanogenerator for water wave energy harvesting. InfoMat. 2024 Oct 14; DOI: https://doi.org/10.1002/inf2.12621

59. Lakshakoti B, Sankar PR, Supraja P, Navaneeth M, Mahesh V, Kumar KU, et al. Innovative triboelectric nanogenerator (TENG) design utilizing a stress ball for energy harvesting, wellness, and safety applications. Engineering Research Express. 2024 Mar 1;6(1):015081. DOI: https://doi.org/10.1088/2631-8695/ad2245

60. Zhou J, Ma X, Gao J, Kim E, Deng Z, Rao Q, et al. Switchable Power Generation in Triboelectric Nanogenerator Toward Chip‐Less Wearable Power Module Applications. Small. 2024 Aug 12;20(31). DOI: https://doi.org/10.1002/smll.202306980

61. Liu J, Li S, Yang M, Wang Y, Cui N, Gu L. Coaxial Spring-Like Stretchable Triboelectric Nanogenerator Toward Personal Healthcare Monitoring. Front Bioeng Biotechnol. 2022 Apr 13;10. DOI: https://doi.org/10.3389/fbioe.2022.889364

62. Choi YS, Jing Q, Datta A, Boughey C, Kar-Narayan S. A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting. Energy Environ Sci. 2017;10(10):2180–9. DOI: https://doi.org/10.1039/C7EE01292F

63. Qiu Y, Yang D, Li B, Shao S, Hu L. Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy. RSC Adv. 2018;8(46):26243–50. DOI: https://doi.org/10.1039/C8RA03677B

64. Chen J, Zhang C, Xuan W, Yu L, Dong S, Xie Y, et al. Triboelectric Nanogenerator-Based Self-Powered Resonant Sensor for Non-Destructive Defect Detection. Sensors. 2019 Jul 24;19(15):3262. DOI: https://doi.org/10.3390/s19153262

65. Chen H, Xu Y, Zhang J, Wu W, Song G. Self-Powered Flexible Blood Oxygen Monitoring System Based on a Triboelectric Nanogenerator. Nanomaterials. 2019 May 21;9(5):778. DOI: https://doi.org/10.3390/nano9050778

66. Sun JG, Yang TN, Kuo IS, Wu JM, Wang CY, Chen LJ. A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy. 2017 Feb;32:180–6. DOI: https://doi.org/10.1016/j.nanoen.2016.12.032

67. Kim MK, Kim MS, Kwon HB, Jo SE, Kim YJ. Wearable triboelectric nanogenerator using a plasma-etched PDMS–CNT composite for a physical activity sensor. RSC Adv. 2017;7(76):48368–73. DOI: https://doi.org/10.1039/C7RA07623A

68. Mao Y, Geng D, Liang E, Wang X. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy. 2015 Jul;15:227–34. DOI: https://doi.org/10.1016/j.nanoen.2015.04.026

69. Hou SX, Maitland GC, Trusler JPM. Measurement and modeling of the phase behavior of the (carbon dioxide+water) mixture at temperatures from 298.15K to 448.15K. J Supercrit Fluids. 2013 Jan;73:87–96. DOI: https://doi.org/10.1016/j.supflu.2012.11.011

70. Zhu G, Wang AC, Liu Y, Zhou Y, Wang ZL. Functional Electrical Stimulation by Nanogenerator with 58 V Output Voltage. Nano Lett. 2012 Jun 13;12(6):3086–90. DOI: https://doi.org/10.1021/nl300972f

71. Yang R. A multifunctional triboelectric nanogenerator based on PDMS/MXene for bio-mechanical energy harvesting and volleyball training monitoring. Heliyon. 2024 Jun;10(11):e32361. DOI: https://doi.org/10.1016/j.heliyon.2024.e32361

72. Xu T, Ye J, Tan J. Unravelling the Ageing Effects of PDMS‐Based Triboelectric Nanogenerators. Adv Mater Interfaces. 2024 Jul 21;11(19). DOI: https://doi.org/10.1002/admi.202400094

73. Tofel P, Částková K, Říha D, Sobola D, Papež N, Kaštyl J, et al. Triboelectric Response of Electrospun Stratified PVDF and PA Structures. Nanomaterials. 2022 Jan 22;12(3):349. DOI: https://doi.org/10.3390/nano12030349

74. Leon RT, Sherrell PC, Šutka A, Ellis A V. Decoupling piezoelectric and triboelectric signals from PENGs using the fast fourier transform. Nano Energy. 2023 Jun;110:108445. DOI: https://doi.org/10.1016/j.nanoen.2023.108445

75. Song J, Yang B, Zeng W, Peng Z, Lin S, Li J, et al. Highly Flexible, Large‐Area, and Facile Textile‐Based Hybrid Nanogenerator with Cascaded Piezoelectric and Triboelectric Units for Mechanical Energy Harvesting. Adv Mater Technol. 2018 Jun 14;3(6). DOI: https://doi.org/10.1002/admt.201800016

76. Chen S, Tao X, Zeng W, Yang B, Shang S. Quantifying Energy Harvested from Contact‐Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units. Adv Energy Mater. 2017 Mar 18;7(5). DOI: https://doi.org/10.1002/aenm.201601569

77. Niranjana VS, Yoon JU, Woo I, Gajula P, Bae JW, Prabu AA. Exploring a New Class of PVDF/3‐Aminopropyltriethoxysilane (core) and 2,2‐Bis(hydroxymethyl)butyric Acid (monomer)‐Based Hyperbranched Polyester Hybrid Fibers by Electrospinning Technique for Enhancing Triboelectric Performance. Adv Sustain Syst. 2024 Nov 10;8(11). DOI: https://doi.org/10.1002/adsu.202400311

78. Mubarak A, Sarsembayev B, Serik Y, Onabek A, Kappassov Z, Bakenov Z, et al. Quenched PVDF / PMMA Porous Matrix for Triboelectric Energy Harvesting and Sensing. ENERGY & ENVIRONMENTAL MATERIALS. 2025 Jan;8(1). DOI: https://doi.org/10.1002/eem2.12808

79. Huang T, Lu M, Yu H, Zhang Q, Wang H, Zhu M. Enhanced Power Output of a Triboelectric Nanogenerator Composed of Electrospun Nanofiber Mats Doped with Graphene Oxide. Sci Rep. 2015 Sep 21;5(1):13942. DOI: https://doi.org/10.1038/srep13942

80. Izadpanahi A, Azin R, Osfouri S, Malakooti R. Production optimization in a fractured carbonate reservoir with high producing GOR. Energy Geoscience. 2024 Oct;5(4):100334. DOI: https://doi.org/10.1016/j.engeos.2024.100334

81. Ning C, Xiang S, Sun X, Zhao X, Wei C, Li L, et al. Highly stretchable kirigami-patterned nanofiber-based nanogenerators for harvesting human motion energy to power wearable electronics. Materials Futures. 2024 Jun 1;3(2):025101. DOI: https://doi.org/10.1088/2752-5724/ad2f6a

82. Garcia C, Trendafilova I. Real-time diagnosis of small energy impacts using a triboelectric nanosensor. Sens Actuators A Phys. 2019 Jun;291:196–203. DOI: https://doi.org/10.1016/j.sna.2019.03.044

83. Lapčinskis L, Ma̅lnieks K, Linarts A, Blu̅ms J, Šmits K, Järvekülg M, et al. Hybrid Tribo-Piezo-Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers. ACS Appl Energy Mater. 2019 Jun 24;2(6):4027–32. DOI: https://doi.org/10.1021/acsaem.9b00836

84. Paosangthong W, Wagih M, Torah R, Beeby S. Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Woven Structure. In: The 3rd International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles. Basel Switzerland: MDPI; 2022. p. 19. DOI: https://doi.org/10.3390/engproc2022015019

85. Le TH, Mai UKG, Huynh DP, Nguyen HT, Luu AT, Bui VT. Surfactant-free GO-PLA nanocomposite with honeycomb patterned surface for high power antagonistic bio-triboelectric nanogenerator. Journal of Science: Advanced Materials and Devices. 2022 Mar;7(1):100392. DOI: https://doi.org/10.1016/j.jsamd.2021.08.005

86. Meng L, Yang Y, Liu S, Wang S, Zhang T, Guo X. Energy Storage Triboelectric Nanogenerator Based on Ratchet Mechanism for Random Ocean Energy Harvesting. ACS Omega. 2023 Jan 10;8(1):1362–8. DOI: https://doi.org/10.1021/acsomega.2c06783

87. Geng F, Huo X. A Self-Powered Sport Sensor Based on Triboelectric Nanogenerator for Fosbury Flop Training. J Sens. 2022 Aug 31;2022:1–10. DOI: https://doi.org/10.1155/2022/3130928

88. Jiang C, Lai CL, Xu B, So MY, Li Z. Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy. 2022 Mar;93:106807. DOI: https://doi.org/10.1016/j.nanoen.2021.106807

Downloads

Published

2025-03-28

How to Cite

1.
Guerra J, Quinde I, Collaguazo G, Martínez A, León G. Determining the Predominant Materials for Triboelectric Nanogenerator Fabrication: A Bibliometric and a Systematic Analysis. Data and Metadata [Internet]. 2025 Mar. 28 [cited 2025 Nov. 30];4:764. Available from: https://dm.ageditor.ar/index.php/dm/article/view/764