Microclimate condition monitoring system for the prevention of methane contamination in the methane contamination in compost production in Microfarms
DOI:
https://doi.org/10.56294/dm2025770Keywords:
microclimate, methane, microfarms, compost, composting, IoTAbstract
This work focuses on the development and implementation of a microclimate variable control system to prevent microbial contaminants in compost production, with the objective of investigating composting methods and how they can help reduce the production of methane, a greenhouse gas, and thus contribute to environmental care. The Action-Research methodology is used with the use of sensors that monitor data on environmental variables of ambient temperature, relative humidity and soil moisture, which are sent to an IoT platform where the necessary data are processed and generated. A specific infrastructure is designed for compost production, which includes a closed box lined with greenhouse plastic, a container for the compost, a piping system to maintain humidity, a heater to raise the temperature and a protective box for the sensors. Also included is the development and training of a neural network model that predicts methane production based on the above variables. The data show that composting at temperatures between 55-65 degrees Celsius, using aerobic biological methods, significantly reduces methane production by eliminating bacteria responsible for methane generation. The data collected and model predictions can be monitored remotely through the IoT platform. At the conclusion of the work, the compost generated was found to be suitable for micronization.
References
1. Ganadería M de A y. Agricultura, la base de la economía y la alimentación [Internet]. Ministerio de Agricultura y Ganadería. 2019. Available from: https://www.agricultura.gob.ec/agricultura-la-base-de-la-economia-y-la-alimentacion/
2. Permaculture DG. How to Make Compost in 18 Days Using the Berkeley Hot Composting Method [Internet]. 2010 [cited 2024 Sep 25]. Available from: https://climate.selectra.com/en/environment/greenhouse-effect
3. Agencia EFE. Ecuador es un territorio vulnerable frente a los gases de efecto invernadero [Internet]. EL COMERCIO. Ibarra: Ecuador es un territorio vulnerable frente a los gases de efecto invernadero. EL COMERCIO: :text=De; 2019. Available from: https://www.elcomercio.com/tendencias/ecuador-territorio-vulnerable-gases-contaminacion.html#:
4. Bednarski N. Greenhouse Effect 101 [Internet]. 2019 [cited 2024 Sep 25]. Available from: https://www.nrdc.org/stories/greenhouse-effect-101#whatis
5. Román P, Martínez M, Pantoja A. Manual de compostaje del agricultor. 2013.
6. Curtis K. The Microfarm Project | The Ohio State University [Internet]. 2019 [cited 2024 Sep 25]. Available from: https://osumarion.osu.edu/outreach/educational-partnerships/microfarm
7. Alvarado A. Desde el inicio del confinamiento, en marzo, creció el interés por los huertos - El Comercio [Internet]. 2020 [cited 2024 Sep 25]. Available from: https://www.elcomercio.com/tendencias/ambiente/confinamiento-marzo-crecio-interes-huerto.html
8. Laboratory GM. Trends in CO2 - NOAA Global Monitoring Laboratory [Internet]. 2021 [cited 2025 Mar 17]. Available from: https://gml.noaa.gov/ccgg/trends/global.html
9. Mankominitatea H-H. Beneficios del compostaje [Internet]. Bortzirietako. 2022. Available from: https://www.bortziriakzabor.com/es/beneficios-del-compostaje/
10. Indeed. Action Research [Internet]. Indeed. 2021. Available from: https://www.indeed.com/career-advice/career-development/action-research
11. IEEE I. ISO/IEC/IEEE 29148:2018 [Internet]. ISO. 2018. Available from: https://www.iso.org/standard/72089.html
12. Chen J. What Is a Neural Network? [Internet]. 2022 [cited 2025 Mar 17]. Available from: https://www.investopedia.com/terms/n/neuralnetwork.asp
13. Ecocycling. Micro Farms [Internet]. Ecocycling. 2019. Available from: https://ecocycling.org/the-hub/food-network-garden/micro-farms/
14. Castillo D. Neural Network Models Explained [Internet]. SELDOM. 2022. Available from: https://www.seldon.io/neural-network-models-explained
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Blanca Segovia-Rosero , Jaime Michilena-Calderón , Carlos Vásquez-Ayala , Alejandra Pinto-Erazo , Luis Suárez-Zambrano (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.