Non-Invasive Blood Density Measurement using Photoplethysmography Technique
DOI:
https://doi.org/10.56294/dm2025819Keywords:
blood density, photoplethysmography, Beer–Lambert law, non-invasive biomedical deviceAbstract
Introduction:
Blood density measurement is a key diagnostic indicator for assessing hematological and cardiovascular conditions. Conventional methods require blood extraction and laboratory equipment. In this context, a non-invasive biomedical device based on photoplethysmography (PPG) and the Beer–Lambert law was developed to estimate blood density through optical parameters.
Methods:
A prototype was designed using a microcontroller, an optical sensor, and an OLED display. The acquired signals were digitally filtered through FIR and IIR algorithms to separate pulsatile and non-pulsatile components. Twenty-one volunteers were recruited, and sixteen valid recordings remained after artifact removal. Laboratory reference values were compared using linear regression and Bland–Altman analysis to evaluate concordance between clinical and device-derived measurements.
Results:
The device achieved an average error of 2.0 % for blood-density estimation, 6.06 % for hematocrit, and 7.01 % for erythrocyte count. The limits of agreement remained within clinically acceptable ranges, with a slight underestimation bias at higher density values. Main limitations were related to the restricted spectral range of the red and infrared LEDs and to physiological variables such as peripheral perfusion and involuntary movements.
Conclusions:
The proposed system demonstrated accuracy and stability for non-invasive blood-density estimation, validating PPG as a portable, low-cost diagnostic tool. Future improvements should include a broader calibration dataset and multispectral light sources with higher sensitivity to enhance linearity and dynamic range.
References
1. Gamas L, Lee JS. Density indicator method to measure pulmonary blood flows. J Appl Physiol. 1986;60(1):327–34. Disponible en: https://journals.physiology.org/doi/epdf/10.1152/jappl.1986.60.1.327 DOI: https://doi.org/10.1152/jappl.1986.60.1.327
2. Yilmaz F, Gundogdu MY. A critical review on blood flow in large arteries: relevance to blood rheology, viscosity and elasticity. J Med Sci. 2008;10–15.
3. Wennecke G. Hematocrit – a review of different analytical methods. Acute Care Testing [Internet]. 2004 Sep;1–9. Disponible en: https://acutecaretesting.org/en/articles/hematocrit--a-review-of-different-analytical-methods
4. Brodkey FD. Hematocrit. MedlinePlus [Internet]. 2024 Nov [citado 7 Oct 2025]. Disponible en: https://medlineplus.gov/ency/article/003646.htm
5. Kishimoto S, Maruhash T. Hematocrit, hemoglobin and red blood cells are associated with vascular function and vascular structure in men. Sci Rep. 2020 Jul;10:68319. Disponible en: https://www.nature.com/articles/s41598-020-68319-1 DOI: https://doi.org/10.1038/s41598-020-68319-1
6. Park J, Seok HS, Kim SS, Shin H. Photoplethysmogram analysis and applications: an integrative review. Front Physiol [Internet]. 2021 [citado 7 Oct 2025];12:808451. Disponible en: https://www.frontiersin.org/articles/10.3389/fphys.2021.808451/full DOI: https://doi.org/10.3389/fphys.2021.808451
7. Davis CL, Harrison PD, Bronson JE. Noninvasive method of measuring blood density and hematocrit. US Patent US7011631B2 [Internet]. 2004 [citado 7 Oct 2025]. Disponible en: https://patents.google.com/patent/US7011631B2/es
8. Chen W, Yi Z, Lim LJR, Lim RQR, Zhang A, Qian Z, et al. Deep learning and remote photoplethysmography powered advancements in contactless physiological measurement. Front Bioeng Biotechnol. 2024;12:1420100. doi:10.3389/fbioe.2024.1420100 DOI: https://doi.org/10.3389/fbioe.2024.1420100
9. Mieles Freire MS. Dispositivo para medir la cantidad de hemoglobina en la sangre [tesis de pregrado]. Ibarra (Ecuador): Universidad Técnica del Norte; 2023. p. 88–90.
10. Celleri S. Sistema no invasivo de medición de azúcar en la sangre utilizando diferentes longitudes de onda infrarroja [tesis de pregrado]. Ibarra (Ecuador): Universidad Técnica del Norte; 2023. p. 80–100.
11. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1–10. DOI: https://doi.org/10.1088/0967-3334/28/3/R01
12. Kenner T. The measurement of blood density and its meaning. Basic Res Cardiol. 1989;84(2):111–24. DOI: https://doi.org/10.1007/BF01907921
13. Elson DS, et al. Quantitative optical spectroscopy for tissue diagnosis and monitoring. J Biomed Opt. 2009;14(6):064015. doi:10.1117/1.3259370
14. Sridhar AR, Cheung JW, Lampert R, Silva JNA, Gopinathannair R, Sotomonte JC, et al. State of the art of mobile health technologies use in clinical arrhythmia care. Commun Med. 2024;4:218. DOI: https://doi.org/10.1038/s43856-024-00618-4
15. Penmetcha V, Rambabu L, Smith BG, Mantle O, Edmiston T, Hobbs L, et al. Evaluating diversity in open photoplethysmography datasets: protocol for a systematic review. JMIR Res Protoc. 2025;34:e73040. DOI: https://doi.org/10.2196/73040
Published
Issue
Section
License
Copyright (c) 2025 Theo Marcelo Galindo Chicaiza, Luz María Tobar Subía Contento , Brizeida Nohemí Gámez Aparicio , Marco Antonio Ciaccia Sortino, Cosme Damián Mejía Echeverría , Diego Luis Ortiz Morales (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.
