Simulated Annealing-Based Optimization of IEEE-33 Radial Distribution Networks with Integrated Auxiliary PV Sources Using PyPower

Authors

DOI:

https://doi.org/10.56294/dm2025821

Keywords:

Transformer optimization, Simulated annealing, Distribution networks, IEEE 33-bus, Power losses, Voltage regulation

Abstract

The integration of distributed photovoltaic (PV) generation in radial distribution networks has been consolidated as a key strategy to reduce technical losses and improve voltage profiles. However, the optimal placement and sizing of these sources remain a challenge due to the nonlinear and multimodal nature of the problem. In this work, an approach based on simulated annealing with adaptive restarts, implemented in PyPower, is proposed to determine the optimal location of PV units in the IEEE 33-bus test system. The methodology considers the minimization of active power losses as the objective function, subject to operational constraints and voltage limits.
The results show that the proposed strategy achieves a reduction in losses of up to 52% compared to the base scenario, in addition to improving minimum voltage profiles to values close to 0.98 pu. The comparison with non-optimized scenarios highlights the effectiveness of the method in balancing energy efficiency and quality of service. This study contributes to the literature by demonstrating the applicability of lightweight metaheuristics in distribution network planning problems and lays the groundwork for future research integrating storage and dynamic load and generation scenarios.

References

1. Montoya OD, Gil-González W, Grisales-Noreña LF. An exact MINLP model for optimal location and sizing of DGs in distribution networks. Ain Shams Eng J. 2020;11(2):409–18. doi:10.1016/j.asej.2019.08.011 DOI: https://doi.org/10.1016/j.asej.2019.08.011

2. Gil-González W, Garcés A, Montoya OD, Hernández JC. Mixed-integer convex model for optimal placement and sizing of distributed generators. Appl Sci. 2021;11(2):627. doi:10.3390/app11020627 DOI: https://doi.org/10.3390/app11020627

3. Mejía MA, Macedo LH, Muñoz-Delgado G, Contreras J, Padilha-Feltrin A. Multistage planning model for active distribution systems. IEEE Trans Smart Grid. 2021;13(2):1383–97. doi:10.1109/TSG.2021.3091234 DOI: https://doi.org/10.1109/TSG.2021.3125786

4. Zhang Y, Li J, Wang X, et al. Optimal PV allocation in distribution networks considering uncertainty. IEEE Trans Smart Grid. 2022;13(5):4120–31. doi:10.1109/TSG.2022.3156789

5. Purlu M, Turkay BE. Optimal allocation of renewable distributed generations using heuristic methods. IEEE Access. 2022;10:21455–74. doi:10.1109/ACCESS.2022.3153042 DOI: https://doi.org/10.1109/ACCESS.2022.3153042

6. Li J, Xu Y, Wang C, et al. Hybrid metaheuristic for DG placement in smart grids. Appl Energy. 2023;335:120765. doi:10.1016/j.apenergy.2022.120765

7. Kumar A, Singh R, Sharma P. Simulated annealing for optimal DG placement in distribution systems. Energy Rep. 2021;7:4567–78. doi:10.1016/j.egyr.2021.07.089 DOI: https://doi.org/10.1016/j.egyr.2021.07.089

8. Singh R, Reddy P, Kumar A. Metaheuristic approaches for renewable integration in distribution networks. Sustain Energy Grids Netw. 2022;32:100912. doi:10.1016/j.segan.2022.100912

9. Reddy P, Sharma V, Singh R. Optimal PV placement using hybrid SA-PSO. IEEE Access. 2023;11:45678–90. doi:10.1109/ACCESS.2023.3245678

10. Ufa R, Malkova YY, Rudnik V, et al. A review on distributed generation impacts on electric power system. Int J Hydrogen Energy. 2022;47(47):20347–61. doi:10.1016/j.ijhydene.2022.04.123 DOI: https://doi.org/10.1016/j.ijhydene.2022.04.142

11. Shuaibu Hassan A, Sun Y, Wang Z. Optimization techniques for planning and integration of renewable energy sources. Cogent Eng. 2020;7(1):1766394. doi:10.1080/23311916.2020.1766394 DOI: https://doi.org/10.1080/23311916.2020.1766394

12. Zhang D, Shafiullah G, Das CK, Wong KW. Systematic review of optimal planning and deployment of distributed generation. J Energy Storage. 2022;56:105937. doi:10.1016/j.est.2022.105937 DOI: https://doi.org/10.1016/j.est.2022.105937

13. Gil-González W, Montoya OD, Grisales-Noreña LF. Convex optimization for DG placement. Electr Power Syst Res. 2021;190:106–21. doi:10.1016/j.epsr.2020.106621 DOI: https://doi.org/10.1016/j.epsr.2020.106621

14. Baran ME, Wu FF. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans Power Deliv. 1989;4(2):1401–7. doi:10.1109/61.25627 DOI: https://doi.org/10.1109/61.25627

15. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–80. doi:10.1126/science.220.4598.671 DOI: https://doi.org/10.1126/science.220.4598.671

16. Černý V. Thermodynamical approach to the traveling salesman problem: an efficient simulated annealing algorithm. J Optim Theory Appl. 1985;45:41–51. doi:10.1007/BF00940812 DOI: https://doi.org/10.1007/BF00940812

17. Peng C, Sun Y, Wang Z. Reproducible research in power systems optimization. IEEE Access. 2022;10:12345–56. doi:10.1109/ACCESS.2022.3145678

18. IEEE Std 1547-2018. Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE; 2018. doi:10.1109/IEEESTD.2018.8345584

19. Li J, Xu Y, Wang C, et al. Multi-objective optimization for PV and storage planning in smart grids. Appl Energy. 2023;336:120789. doi:10.1016/j.apenergy.2022.120789

20. Pon Ragothama Priya P, Baskar S, Tamil Selvi S, Babulal CK. Optimal allocation of distributed generation using evolutionary multi-objective optimization. J Electr Eng Technol. 2023;18:869–886. doi:10.1007/s42835-022-01269-y DOI: https://doi.org/10.1007/s42835-022-01269-y

21. Qi H, Yan X, Kang Y, Yang Z, Ma S, Mi Y. Multi-objective optimization strategy for the distribution network with distributed photovoltaic and energy storage. Front Energy Res. 2024;12:1418893. doi:10.3389/fenrg.2024.1418893 DOI: https://doi.org/10.3389/fenrg.2024.1418893

22. Al Abri RS, El-Saadany EF, Atwa YM. Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation. IEEE Trans Power Syst. 2012;28(1):326–334. doi:10.1109/TPWRS.2012.2237043 DOI: https://doi.org/10.1109/TPWRS.2012.2200049

23. Moradi MH, Abedini M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int J Electr Power Energy Syst. 2012;34(1):66–74. doi:10.1016/j.ijepes.2011.08.023 DOI: https://doi.org/10.1016/j.ijepes.2011.08.023

24. Hussain A, Bui V-H, Kim H-M. Robust optimization-based scheduling of multi-microgrids considering uncertainties. Energies. 2016;9(4):278. doi:10.3390/en9040278 DOI: https://doi.org/10.3390/en9040278

25. Sharma P, Mathur HD. Optimal siting and sizing of renewable energy sources in distribution system. In: Optimal Planning and Operation of Distributed Energy Resources. Springer; 2023. p. 89–112. doi:10.1007/978-981-99-2800-2_5 DOI: https://doi.org/10.1007/978-981-99-2800-2_5

26. Electric Power Research Institute (EPRI). OpenDSS – Electric Power Distribution System Simulator [Internet]. SourceForge; 2025 [citado 2025 Oct 7]. Disponible en: https://sourceforge.net/projects/electricdss/

27. University of Kassel; Fraunhofer IEE. Pandapower – Power System Modeling and Analysis Tool [Internet]. 2025 [citado 2025 Oct 7]. Disponible en: https://www.pandapower.org/

Downloads

Published

2025-11-27

Issue

Section

Original

How to Cite

1.
Naranjo Cobo FR, Guerra Masson JE, Imbaquingo Esparza D. Simulated Annealing-Based Optimization of IEEE-33 Radial Distribution Networks with Integrated Auxiliary PV Sources Using PyPower. Data and Metadata [Internet]. 2025 Nov. 27 [cited 2025 Dec. 30];4:821. Available from: https://dm.ageditor.ar/index.php/dm/article/view/821