Development and Mechanical Evaluation of a Biocomposite Based on Abaca Fiber and Acrylic Resin

Authors

DOI:

https://doi.org/10.56294/dm2025823

Keywords:

Abaca, Biocomposite, Nonwoven, Elongation, Tensile strength

Abstract

The biocomposite made from a nonwoven abaca fiber reinforced with acrylic resin is proposed as an ecological alternative to synthetic leather. The objective of this research was to develop and characterize the material, evaluating the effect of two variables: the length of the abaca fiber (2 cm and 5 cm) and the concentration of acrylic resin (70% and 80%). The manufacturing process consisted of immersing the nonwoven fabric in the resin solution, followed by drying at 120°C. A completely randomized 2² factorial design was implemented, with a total of 20 experimental runs. The response variables were tensile strength and elongation, evaluated using a Titan 5 James Heal dynamometer under ISO 1421. Statistical analysis was performed using Statgraphics Centurion software and revealed that fiber length has a significant positive effect on tensile strength, while elongation is less relevant. The results obtained with 5 cm fibers and 70% acrylic resin achieved a tensile strength of 118,3 N; in terms of elongation, the value obtained was 50,2 mm with 2 cm fibers and 70% resin. Taken together, these findings position vegetable leather as a functional and sustainable material with high potential for application in the textile and composite materials industries.

References

1. Sumner M. The Independent. 2017 [citado 6 de julio de 2025]. It may not be possible to slow down fast fashion – so can the industry ever be sustainable? Disponible en: https://www.independent.co.uk/life-style/fashion/it-may-not-be-possible-to-slow-down-fast-fashion-so-can-the-industry-ever-be-sustainable-a7970031.html DOI: https://doi.org/10.64628/AB.uv6v74yny

2. Wang H. Advantages of animal leather over alternatives and its medical applications. Eur Polym J. 24 de junio de 2024;214:113153. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113153

3. Choi SM, Lee DH, Zo SM, Sood A, Han SS. Gel-Based Approaches to Vegan Leather: Opportunities and Challenges in Mimicking Leather Properties. Gels. junio de 2025;11(6):395. DOI: https://doi.org/10.3390/gels11060395

4. Ferraris S, Gamna F, Luxbacher T, Maculotti G, Giorio L, Kholkhujaev J, et al. Comparative characterization of leather from different tanning processes as a contribution for a sustainable development of the leather industry. Sci Rep. 27 de marzo de 2025;15(1):10608. DOI: https://doi.org/10.1038/s41598-025-94531-y

5. Gilmar H, Olayinka O, Gerda W, Nykieta J, Fauz S, Dayo A, et al. Methods for Quantification of Tannins and Other Polyphenols in Syzygium cumini (L.) Bark for Potential Use in Leather Tanning Colouration. Trop J Nat Prod Res [Internet]. 2 de diciembre de 2024 [citado 6 de julio de 2025];8(11). Disponible en: https://www.tjnpr.org/index.php/home/article/view/5246 DOI: https://doi.org/10.26538/tjnpr/v8i11.17

6. Prete P, Acocella S, Intiso A, Cucciniello R. Determination of Cr (VI) released by leather samples using smartphone-based colorimetry for on-site determination and miniaturization as greener preparation strategy. Green Anal Chem. 1 de marzo de 2025;12:100232. DOI: https://doi.org/10.1016/j.greeac.2025.100232

7. Pachnerová Brabcová K, Pravdíková N, Čápová K, Frouzová J, Hebenstreitová K, Jandová K, et al. Effect of leather tanning process on stable isotopes and radiocarbon in tissues of Persian leopard: Preliminary results. Forensic Sci Int Rep. 1 de diciembre de 2024;10:100398. DOI: https://doi.org/10.1016/j.fsir.2024.100398

8. Fan Q, Chen Q, Fan J, Lei Y, Albu-Kaya MG, Tang K. Deterioration of Simulated Waterlogged Leather Tanned with Vegetable Tanning Agents. J Am Leather Chem Assoc. 28 de febrero de 2025;120(03):115-24. DOI: https://doi.org/10.34314/2b9ncd73

9. Hashem MdA, Shahadat MdS, Tabassum JN, Miem MdM, Maoya M. Extraction of tannin from Abrus precetorius seed in leather processing: An eco-friendly approach. Green Technol Sustain. 1 de julio de 2025;3(3):100216. DOI: https://doi.org/10.1016/j.grets.2025.100216

10. Facchin M, Gatto V, Samiolo R, Conca S, Santandrea D, Beghetto V. May 1,3,5-Triazine derivatives be the future of leather tanning? A critical review. Environ Pollut. 15 de marzo de 2024;345:123472. DOI: https://doi.org/10.1016/j.envpol.2024.123472

11. Thomasset A, Benayoun S. Assessing the durability of diverse leather tanning techniques for the manufacturing of leather goods through artificial aging processes. Clean Eng Technol. 1 de octubre de 2024;22:100807. DOI: https://doi.org/10.1016/j.clet.2024.100807

12. Conca S, Gatto V, Samiolo R, Giovando S, Cassani A, Tarabra E, et al. Characterisation and tanning effects of purified chestnut and sulfited quebracho extracts. Collagen Leather. diciembre de 2024;6(1):28. DOI: https://doi.org/10.1186/s42825-024-00171-9

13. Shakil SR, Zenith FTJ, Khan MR, Tonay WR. Application and valorization of novel indigenous Azadirachta indica leaf in leather processing. Heliyon. septiembre de 2024;10(17):e36270.

14. Shakil SR, Zenith FTJ, Khan MR, Tonay WR. Application and valorization of novel indigenous Azadirachta indica leaf in leather processing. Heliyon. septiembre de 2024;10(17):e36270. DOI: https://doi.org/10.1016/j.heliyon.2024.e36270

15. Pavani C, Rao PA, Vishnu P, Raja H, Sriram, Sirisha N. Vegan Leather from Agricultural Waste: Exploring Sustainable and Cruelty-Free Alternatives. En: Arya RK, Verros GD, Verma OP, Hussain CM, editores. From Waste to Wealth [Internet]. Singapore: Springer Nature; 2024 [citado 19 de julio de 2025]. p. 951-64. Disponible en: https://doi.org/10.1007/978-981-99-7552-5_42 DOI: https://doi.org/10.1007/978-981-99-7552-5_42

16. Rimantho D, Chaerani L, Sundari AS. Initial mechanical properties of orange peel waste as raw material for vegan leather production. Case Stud Chem Environ Eng. 1 de diciembre de 2024;10:100786. DOI: https://doi.org/10.1016/j.cscee.2024.100786

17. Maitree N, Naruetharadhol P, Wongsaichia S. Encouraging sustainable consumption: Investigating consumer inclination to purchase products made from mango wastes. Clean Mater. 1 de marzo de 2024;11:100232. DOI: https://doi.org/10.1016/j.clema.2024.100232

18. Essalhi F, Essadak A, Bengueddour R. Valorization of trout skins for a circular bioeconomy: Ecological leather production and anaerobic co-digestion of tanning effluents with trout byproducts (Morocco). Environ Chall. septiembre de 2025;20:101197. DOI: https://doi.org/10.1016/j.envc.2025.101197

19. Novia D, Sandra A, Sriagtula R, Rambe H, Busmantoni B, Putra A. Eco-friendly dehairing of goat leather using indigenous rumen microorganisms: Physicochemical and sensory evaluations. Open Vet J. 2025;(0):1331. DOI: https://doi.org/10.5455/OVJ.2025.v15.i3.24

20. Absharina D, Padri M, Veres C, Vágvölgyi C. Bacterial Cellulose: From Biofabrication to Applications in Sustainable Fashion and Vegan Leather. Fermentation. enero de 2025;11(1):23. DOI: https://doi.org/10.3390/fermentation11010023

21. Nguyen NNY, Nguyen TP, Ta HN, Lu TTM, Pham NY, Le TCG. Bioleather from food waste: Formulation, texture properties and biodegradation capacity. IOP Conf Ser Earth Environ Sci. 1 de marzo de 2025;1465(1):012017. DOI: https://doi.org/10.1088/1755-1315/1465/1/012017

22. Ihlenfeldt S, Schillberg S, Herrmann C, Vogel S, Arafat R, Harst S. Mycelium-based-composites – Vision for substitution of fossil-based materials. Procedia CIRP. 1 de enero de 2024;125:78-83. DOI: https://doi.org/10.1016/j.procir.2024.08.014

23. Amobonye A, Lalung J, Awasthi MK, Pillai S. Fungal mycelium as leather alternative: A sustainable biogenic material for the fashion industry. Sustain Mater Technol. 1 de diciembre de 2023;38:e00724. DOI: https://doi.org/10.1016/j.susmat.2023.e00724

24. Wijayarathna ERKB, Svensson SE, Sar T, Zamani A. Multilayer biocomposite vegan leather materials derived from vegetable-tanned fungal biomass cultivated on food waste. Sci Rep. 2 de mayo de 2025;15(1):15366. DOI: https://doi.org/10.1038/s41598-025-98361-w

25. Mehta A, Serventi L, Kumar L, Torrico DD. The Scoop on SCOBY (Symbiotic Culture of Bacteria and Yeast): Exploring Consumer Behaviours towards a Novel Ice Cream. Foods. enero de 2023;12(17):3152. DOI: https://doi.org/10.3390/foods12173152

26. Vijeandran K, Thanh TAV. Synthesis of Vegan Leather Using Plant-Based Substrates: A Preliminary Study. Defect Diffus Forum. 2021;411:57-66. DOI: https://doi.org/10.4028/www.scientific.net/DDF.411.57

27. Akhter S, Jahan MS, Rahman MdL, Ruhane TA, Ahmed M, Khan MA. Revolutionizing Sustainable Fashion: Jute–Mycelium Vegan Leather Reinforced with Polyhydroxyalkanoate Biopolymer Crosslinking from Novel Bacteria. Adv Polym Technol. 2024;2024(1):1304800. DOI: https://doi.org/10.1155/2024/1304800

28. Wemegah R, Addo RAO, Awinzeligo HM, Ibrahim-Dey AM. Integrating E-Waste and Vegetable-Tanned Leather to Produce Fashion Adornments. Afr J Appl Res. 25 de diciembre de 2024;10(2):153-72. DOI: https://doi.org/10.26437/ajar.v10i2.800

29. Hao Y, Wang H, Tian D, Zhang W, Shi B. Scalable production of robust, moisture-wicking, and breathable superfine mycelium fiber/waterborne polyurethane leather-like textile via direct casting and oven-drying. Ind Crops Prod. 1 de abril de 2025;226:120632. DOI: https://doi.org/10.1016/j.indcrop.2025.120632

30. Katogi H. Effect of Outdoor Exposure on Tensile Property of Synthetic Leather for Personal Mobility. Procedia Struct Integr. 1 de enero de 2024;52:611-7. DOI: https://doi.org/10.1016/j.prostr.2023.12.062

31. Ryu J, Hao LT, Kim H, Lee S, Jeon H, Hwang DS, et al. Biobased Poly(ester amide)s as Sustainable Coating Materials for Vegan Leather with Improved Haptic Sensation. ACS Sustain Chem Eng. 26 de mayo de 2025;13(20):7585-97. DOI: https://doi.org/10.1021/acssuschemeng.5c01838

32. UNE-EN ISO 139:2005 Atmósferas normales para acondicionamiento y ensayo (ISO 139:2005). [Internet]. [citado el 18 de julio de 2025]. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0034006

33. ISO [Internet]. [citado el 18 de julio de 2025]. ISO 1421:2016. Tejidos recubiertos de caucho o plástico: determinación de la resistencia a la tracción y el alargamiento de rotura. Disponible en: https://www.iso.org/standard/65588.html

34. ISO 3801:1977. Determinación de la masa por unidad de longitud y masa por unidad de área [Internet]. [citado el 18 de julio de 2025]. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/iso?c=009335

35. ISO [Internet]. [citado el 18 de julio de 2025]. ISO 2589:2016. Cuero — Ensayos físicos y mecánicos — Determinación del espesor. Disponible en: https://www.iso.org/standard/68859.html

36. Zambrano A. Evaluación a la resistencia a la tracción y elongación de la imitación del cuero vegetal a partir de un no tejido de fibra de abacá. [Internet]. 2025. Disponible en: https://repositorio.utn.edu.ec/handle/123456789/17488

Downloads

Published

2025-11-26

Issue

Section

Original

How to Cite

1.
Zambrano A, Muñoz EM, Naranjo Toro M. Development and Mechanical Evaluation of a Biocomposite Based on Abaca Fiber and Acrylic Resin. Data and Metadata [Internet]. 2025 Nov. 26 [cited 2025 Dec. 30];4:823. Available from: https://dm.ageditor.ar/index.php/dm/article/view/823