Intelligent Monitoring and Early Warning System Against Frosts for Sustainable Agriculture

Authors

DOI:

https://doi.org/10.56294/dm2025830

Keywords:

Frost control, Internet of Things (IoT), Wireless Sensor Networks (WSN), Machine learning, Early warning system, Agricultural resilience, Climate change

Abstract

Frosts are an adverse climatic phenomenon that severely affects agriculture, causing irreversible damage to plants. This process leads to dehydration, deterioration of plant tissue, and, in extreme cases, total crop loss. The lack of effective prevention and response strategies exacerbates its consequences, resulting in significant economic losses, particularly among small-scale farmers. In Ecuador, the Andean region is especially vulnerable, as its agricultural production depends on stable climatic conditions to achieve adequate harvests. This study presents the development of an early warning system against frosts, based on an Internet of Things (IoT) architecture, which employs long-range Wireless Sensor Networks (WSNs) and supervised learning algorithms specifically decision trees to anticipate frost-prone conditions and issue timely alerts to farmers. This enables the adoption of preventive measures that minimize agricultural losses and strengthen the sector’s resilience to extreme weather events. The research was conducted using the Action Research methodology, which involved an analysis of the phenomenon and the requirements of the stakeholders, followed by the design of a solution that included the selection of appropriate hardware and technologies, as well as the validation of technical requirements. The system was designed and implemented in a real agricultural environment, and the results demonstrated that the proposed solution is reliable, accurate, and adaptable, enabling timely frost detection and real-time alert generation. Furthermore, its effectiveness in crop protection was evident, contributing to the development of a more efficient, sustainable, and technologically advanced agriculture.

References

1. Bravo R, Quintana J, Reyes M. Heladas. Factores, tendencias y efectos frutales y vides. 2020.

2. Ministerio del Ambiente (MAE). “GESTIÓN INTEGRADA PARA LA LUCHA CONTRA LA DESERTIFICACIÓN, DEGRADACIÓN DE LA TIERRA Y ADAPTACIÓN AL CAMBIO CLIMÁTICO” CUP Nro. 40400000.0000.376207 SUBSECRETARÍA DE CAMBIO CLIMÁTICO. 2014.

3. Ministerio del Ambiente Agua y Transición Ecológica (MAATE). PLAN NACIONAL DE ADAPTACIÓN AL CAMBIO CLIMÁTICO DEL ECUADOR 2023 - 2027 [Internet]. 2023. Available from: www.ambiente.gob.ec

4. Secretaría Nacional de Planificación (SNP). Plan de Desarrollo Para el Nuevo Ecuador (2024 - 2025). 2024;

5. ONU. Agenda 2030: Objetivos de Desarrollo Sostenible [Internet]. 2015. Available from: https://www.un.org/sustainabledevelopment/es/

6. Wiater A. Metodología de investigación-acción en la didáctica de lenguas extranjeras: sus posibilidades y límites. Lenguas Modernas [Internet]. 2022;59:51–63. Available from: https://lenguasmodernas.uchile.cl/index.php/LM/article/view/67933

7. IEEE/ISO/IEC. International Standard - Systems and software engineering -Std 29148. 104 [Internet]. 2018. Available from: https://standards.ieee.org/standard/29148-2018.html

8. Chacua B. Diseño de un sistema prototipo de reconocimiento facial para la identificación de personas en la Facultad de Ingeniería en Ciencias Aplicadas (FICA) de la Universidad Técnica del Norte utilizando técnicas de Inteligencia Artificial. 2019.

9. Chacua B, Garcia I, Rosero P, Suarez L, Ramirez I, Simbana Z, et al. People Identification through Facial Recognition using Deep Learning. In: 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI) [Internet]. IEEE; 2019 [cited 2025 Sep 18]. p. 1–6. Available from: https://ieeexplore.ieee.org/document/9037043/

10. Xukyo. Descripción general del microcontrolador NodeMCU ESP32 [Internet]. 2024. Available from: https://www.aranacorp.com/es/descripcion-general-del-microcontrolador-nodemcu-esp32/

11. Sigma. Módulo transceptor de largo alcance (LoRa) RFM95W- 915 MHZ [Internet]. 2023. Available from: https://www.sigmaelectronica.net/producto/rfm95w-915mhz/

12. Kuongshun. DHT11 Temperatura Y El Módulo De Sensor De Humedad [Internet]. 2023. Available from: https://www.szks-kuongshun.com/uno/uno-sensor/dht11-temperature-and-humidity-sensor-module.html

13. Components GNS. CJMCU-GUVA-S12SD Intensidad De La Luz Solar Del Sensor Ultravioleta [Internet]. 2023. Available from: http://es.led-diode.com/development-board/cjmcu-guva-s12sd-sunlight-intensity-of-uv.html

14. Arduino.cl. Arduino Uno en Linea [Internet]. 2023. Available from: https://arduino.cl/arduino-uno/

15. Pi R. Raspberry Pi 3 Model B [Internet]. 2022. Available from: https://www.raspberrypi.com/products/raspberry-pi-3-model-b/

16. Qin J, Li Z, Wang R, Li L, Yu Z, He X, et al. Industrial Internet of Learning (IIoL): IIoT based pervasive knowledge network for LPWAN—concept, framework and case studies. CCF Transactions on Pervasive Computing and Interaction [Internet]. 2021 Mar 5;3(1):25–39. Available from: http://link.springer.com/10.1007/s42486-020-00050-2 DOI: https://doi.org/10.1007/s42486-020-00050-2

17. ITU-R. Propagation data and prediction methods for the planning of terrestrial lineof-sight radio systems operating in the frequency range 30 MHz to 3000 MHz. International Telecommunication Union, Geneva, Switzerland. 2015;

18. MathWorks. Introducción a aprendizaje supervisado [Internet]. 2023. Available from: https://la.mathworks.com/discovery/supervised-learning.html

19. (AWS) AWS. ¿Cuál es la diferencia entre el aprendizaje supervisado y el no supervisado? [Internet]. 2023. Available from: https://aws.amazon.com/es/compare/the-difference-between-machine-learning-supervised-and-unsupervised/

20. INESDI. ¿Qué es el aprendizaje no supervisado y cuándo usarlo? [Internet]. 2022. Available from: https://www.inesdi.com/blog/que-es-aprendizaje-no-supervisado/

21. Singh N. Métricas De Evaluación De Modelos En El Aprendizaje Automático [Internet]. 2023. Available from: https://www.datasource.ai/es/data-science-articles/metricas-de-evaluacion-de-modelos-en-el-aprendizaje-automatico

22. Xunta de Galicia. Meteogalicia [Internet]. 2019. Available from: https://www.meteogalicia.gal/web/home.

Downloads

Published

2025-11-25

Issue

Section

Original

How to Cite

1.
Guatemal-Neppas K, Suárez Zambrano L, Vásquez-Ayala C, Michilena-Calderón J, Cuzme-Rodríguez F, Pinto-Erazo A. Intelligent Monitoring and Early Warning System Against Frosts for Sustainable Agriculture. Data and Metadata [Internet]. 2025 Nov. 25 [cited 2025 Dec. 30];4:830. Available from: https://dm.ageditor.ar/index.php/dm/article/view/830