Development and validation of a new artificial intelligence tool (GeneClin) for the clinical diagnosis of genetic diseases

Authors

DOI:

https://doi.org/10.56294/dm2025857

Keywords:

Artificial Intelligence, Virtual Assistant, Rare Diseases, Genetic Diseases, Diagnosis

Abstract

Introduction: Advances in the field of Artificial Intelligence (AI) and Machine Learning (ML) have considerable potential to improve the diagnosis and management of rare genetic diseases, due to the human inability to memorize information on a multitude of these diseases, which AI tools could store, analyze and integrate. Objective: to develop and validate a new AI tool for the clinical diagnosis of genetic diseases. Methods: A prospective, cross-sectional, analytical, observational study was conducted at the application level, with a qualitative-quantitative approach and contributing to a technological development project. It was characterized by four stages: selection of the AI ​​tool, selection of the knowledge base, development of the virtual assistant, validation process and implementation in the clinic. Results: A total of 246 patients with genetic diseases and congenital defects were evaluated. The most predominant genetic category was monogenic genetic syndromes with 223 patients who attended the consultation (90.7%). A success rate of 84.1% was obtained and a success/no success ratio of 4.34. The highest percentage of successes was achieved in monogenic or Mendelian syndromes. There were no significant differences between successes and failures in both chromosomal aberrations and congenital defects of environmental etiology. Conclusions: Through this research, an AI virtual assistant has been validated for the clinical diagnosis of genetic diseases with a high percentage of effectiveness of 84%, which confirms its usefulness to support the clinical diagnosis of cases with genetic diseases.

References

Wojtara M, Rana E, Rahman T, Khanna P, Singh H. Artificial intelligence in rare disease diagnosis and treatment. Clin Transl Sci. 2023 Nov;16(11):2106-2111. doi: 10.1111/cts.13619. Epub 2023 Aug 30. PMID: 37646577; PMCID: PMC10651639.

Koul AM, Ahmad F, Bhat A, Aein QU, Ahmad A, Reshi AA, Kaul RU. Unraveling Down Syndrome: From Genetic Anomaly to Artificial Intelligence-Enhanced Diagnosis. Biomedicines. 2023 Dec 12;11(12):3284. doi: 10.3390/biomedicines11123284. PMID: 38137507; PMCID: PMC10741860.

James KN, Phadke S, Wong TC, Chowdhury S. Artificial Intelligence in the Genetic Diagnosis of Rare Disease. Clin Lab Med. 2023 Mar;43(1):127-143. doi: 10.1016/j.cll.2022.09.023. PMID: 36764805

Abdallah S, Sharifa M, I Kh Almadhoun MK, Khawar MM Sr, Shaikh U, Balabel KM, Saleh I, Manzoor A, Mandal AK, Ekomwereren O, Khine WM, Oyelaja OT. The Impact of Artificial Intelligence on Optimizing Diagnosis and Treatment Plans for Rare Genetic Disorders. Cureus. 2023 Oct 11;15(10):e46860. doi: 10.7759/cureus.46860. PMID: 37954711; PMCID: PMC10636514.

Kurant DE. Opportunities and Challenges with Artificial Intelligence in Genomics. Clin Lab Med. 2023 Mar;43(1):87-97. doi: 10.1016/j.cll.2022.09.007. Epub 2022 Dec 13. PMID: 36764810.

Feero, W. G., Guttmacher, A. E., & Collins, F. S. (2010). Genomic medicine—An updated primer. New England Journal of Medicine, 362(21), 2001-2011. https://doi.org/10.1056/NEJMra0907175

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901

Ginsburg, G. S., & Phillips, K. A. (2018). Precision medicine: From science to value. Health Affairs, 37(5), 694–701. https://doi.org/10.1377/hlthaff.2017.1624

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Taskade [Internet]. Taskade; [actualizado en 2023; citado el 5 de Marzo de 2025]. Disponible en: https://www.taskade.com

Taskade. (s.f.). Taskade: Gestión de proyectos y tareas con IA. https://www.taskade.com

OMIM - Online Mendelian Inheritance in Man [Internet]. Baltimore: Johns Hopkins University; [actualizado en 2023 Oct 1; citado el 2025 Mar 5]. Disponible en: https://www.omim.org

ClinVar [Internet]. Bethesda (MD): National Library of Medicine (US); [actualizado en 2023 Oct 1; citado el 2025 Mar 3]. Disponible en: https://www.ncbi.nlm.nih.gov/clinvar/

GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023 [actualizado en 2023 Oct 1; citado el 2025 Mar 2]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1116/

Reardon W, Donnai D. Atlas of Genetic Diagnosis and Counseling [Internet]. 3rd ed. New York: Springer; 2017 [citado el 2025 Mar 5].

Lerner KL, Lerner BW, editors. Gale Encyclopedia of Genetic Disorders. 4th ed. Farmington Hills (MI): Gale; 2021.

Genetics Home Reference [Internet]. Bethesda (MD): National Library of Medicine (US); [actualizado en 2023 Oct 1; citado el 2025 Mar 5]. Disponible en: https://medlineplus.gov/genetics/

Organización Mundial de la Salud (OMS). Ginebra: OMS; 2021 [citado el 2025 Oct 5]. Disponible en: https://www.who.int/publications/i/item/9789240018284

DECIPHER [Internet]. Hinxton (Reino Unido): Wellcome Sanger Institute; (s.f.) [citado el 2025 Mar 5]. Base de datos de variantes genómicas. Disponible en: https://decipher.sanger.ac.uk/

Orphanet [Internet]. París (Francia): INSERM; (s.f.) [citado el 2025 Mar 25]. Portal de enfermedades raras. Disponible en: https://www.orpha.net/

Human Phenotype Ontology (HPO) [Internet]. [citado el 2025 Mar 25]. Disponible en: https://hpo.jax.org/

Winter RM. The Bedside Dysmorphologist. 2nd ed. Oxford: Oxford University Press; 2010.

Jones, K. L., Jones, M. C., & Del Campo, M. (2013). Smith's recognizable patterns of human malformation (7ª ed.). Elsevier Inc

Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) [Internet]. Official Journal of the European Union. 2016 May 4 [cited 2025 Mar 5]; L119:1-88. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679

Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al. Adopt a moratorium on heritable genome editing. Nature. 2019 Mar;567(7747):165-168. doi: 10.1038/d41586-019-00726-5. PMID: 30867611

Poplin, R., et al. (2018). A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology.

Ferry, Q., et al. (2014). Diagnostically relevant facial gestalt information from ordinary photos. eLife.

Köhler, S., et al. (2009). Clinical diagnostics in human genetics with semantic similarity searches in ontologies. The American Journal of Human Genetics.

Rentzsch, P., et al. (2019). CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research.

Ioannidis, N. M., et al. (2016). REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. The American Journal of Human Genetics.

Raremark. (2020). Improving rare disease diagnosis through AI-driven patient matching. Raremark White Paper.

Splinter, K., et al. (2018). Effect of genetic diagnosis on patients with previously undiagnosed disease. New England Journal of Medicine.

Downloads

Published

2025-03-19

Issue

Section

Original

How to Cite

1.
Dilú Sorzano C, Calixto Robert Y, Pereira Perera Y, Pérez Trujillo J, Martín García D, Pérez Breff G, et al. Development and validation of a new artificial intelligence tool (GeneClin) for the clinical diagnosis of genetic diseases. Data and Metadata [Internet]. 2025 Mar. 19 [cited 2025 Apr. 27];4:857. Available from: https://dm.ageditor.ar/index.php/dm/article/view/857