Forecasting Temperature of Earth Surface in Sragen Regency Using Semiparametric Regression Based on Penalized Fourier Series Estimator

Authors

DOI:

https://doi.org/10.56294/dm2025890

Keywords:

Semiparametric Regression, Penalized Fourier Series Estimator, Earth Surface Temperature, Relative Humidity, Climate Change

Abstract

Sragen regency that is located in Central Java Province of Indonesia, is one of the areas that feels the direct impact of the high earth surface temperature. The various sectors in Sragen regency, including agriculture, health, and the environment are affected by the high temperature of the earth's surface. The Sragen regency is geographically dominated by agricultural areas, which are very vulnerable to extreme earth surface temperatures. This has a direct effect on agricultural productivity and the availability of water for irrigation. This study examines the use of a semiparametric regression model with a Penalized Least Squares (PLS)-based Fourier Series estimator to analyze the relationship between earth surface temperature and relative humidity in Sragen regency. The combining parametric and nonparametric components, the model effectively addresses complex climate data patterns. A dataset of 100 observations was analyzed under three training data scenarios N = 70, N = 80, and N = 90, yielding optimal Fourier coefficients of 1, 1, 1 and lambda values of 0.035, 0.028, and 0.02. The resulting minimum Generalized Cross Validation (GCV) values of 0.3534871, 0.3711413, and 0.3918924. This model successfully made good predictions for testing data sizes of 30, 20, and 10, with MAPE values of 1.606545, 1.518221, and 1.018482. These results underscore the model's ability to capture the inverse relationship between earth surface temperature and relative humidity. The study highlights the Fourier-based semiparametric approach's effectiveness in dynamic scenarios and recommends applying it to other climate variables or regions to further evaluate its adaptability and robustness.

References

1. Khoirunnisa F, Rahmawati Y. Komparasi 2 metode cluster dalam pengelompokan intensitas bencana alam di Indonesia. J Informatika dan Teknik Elektro Terapan [Internet]. 2024 [cited 2025 April 14]; 12(1): 68-79. Available from: https://journal.eng.unila.ac.id/index.php/jitet/article/view/3619/1574.

2. Sari R L, Haeruddin H. Studi pendahuluan potensi carbon capture storage (CCS) melalui identifikasi sumber emisi CO2 beserta tinjauan geologi di daerah Probolinggo, Jember, dan Bondowoso, Jawa Timur. J Teknol Lingkungan Lahan Basah [Internet]. 2024. [cited 2025 April 14]; 12(1): 137–142. Available from: https://jurnal.untan.ac.id/index.php/jmtluntan/article/view/71804.

3. Subiyanto A D. Diplomasi iklim: upaya menyelamatkan bumi dari krisis iklim. PENDIPA: J Sci Edu [Internet]. 2024. [cited 2025 April 14]; 8(1): 27–34. Available from: https://doi.org/10.33369/pendipa.8.1.27-34.

4. Pamungkas G D, Iemaaniah Z M, Bustan B. Analisis karakteristik iklim dan hujan pada lahan pertanian di Kecamatan Kediri Kabupaten Lombok Barat. AGROTEKSOS [Internet]. 2023. [cited 2025 April 14]; 33(3): 855–66. Available from: https://agroteksos.unram.ac.id/index.php/Agroteksos/article/view/858.

5. Ardelia E. Proyeksi penerapan pajak karbon dalam upaya menekan emisi gas rumah kaca pada sektor pertanian dan perkebunan di Indonesia. Innovative: J Soc Sci Res [Internet]. 2023. [cited 2025 April 14]; 3(4): 9070–80. Available from: https://j-innovative.org/index.php/Innovative/article/view/4686.

6. Panunggul V B, Yusra S, Khaerana K, Tuhuteru S, Fahmi D A, Laeshita P, et al. Pengantar Ilmu Pertanian. Penerbit Widina [Internet]. 2023. [cited 2025 April 17]. Available from: https://repository.penerbitwidina.com/publications/564795/pengantar-ilmu-pertanian.

7. Muhammad F, Maryono M, Hadiyanto H, Retnaningsih T, Hastuti R B. Reboisasi sebagai upaya konservasi di KHDTK dipoforest hutan penggaron Kabupaten Semarang. J Pasopati [Internet]. 2023. [cited 2025 April 17]; 5(1): 29–36. Available from: https://ejournal2.undip.ac.id/index.php/pasopati/article/view/17135/0.

8. Adib M. Pemanasan global, perubahan iklim, dampak dan solusinya di sektor pertanian. BioKultur [Internet]. 2014. [cited 2025 April 17]; 3(2): 420–9. Available from: https://journal.unair.ac.id/download-fullpapers-bkbbfe09eddcfull.pdf.

9. Pratama R. Efek rumah kaca terhadap bumi. Buletin Utama Teknik [Internet]. 2019. [cited 2025 April 17]; 14(2): 120–6. Available from: https://jurnal.uisu.ac.id/index.php/but/article/view/1096.

10. Rozci F. Dampak Perubahan iklim terhadap sektor pertanian padi. J Ilmiah Sosio Agribis [Internet]. 2024. [cited 2025 April 17]; 23(2): 108–16. Available from: https://journal.uwks.ac.id/index.php/sosioagribis/article/view/3476.

11. Dai X, Liu Q, Huang C, Li H. Spatiotemporal variation analysis of the fine-scale heat wave risk along the Jakarta-Bandung high-speed railway in Indonesia. Int J Environ Res Public Health [Internet]. 2021. [cited 2025 April 17]; 18(22): 12153. Available from: https://www.mdpi.com/1660-4601/18/22/12153.

12. Kadir E A, Rosa S L, Syukur A, Othman M, Daud H. Forest fire spreading and carbon concentration identification in tropical region Indonesia. Alexandria Eng J [Internet]. 2022. [cited 2025 April 17]; 61(2): 1551–61. Available from: https://www.sciencedirect.com/science/article/pii/S1110016821004191.

13. Jannah A N. Hubungan perubahan cuaca dengan indeks kecerahan matahari, suhu lingkungan dan kelembapan udara di Desa Karanganyar. Karst: J Pendidikan Fisika dan Terapannya [Internet]. 2021. [cited 2025 April 17]; 4(1): 27–32. Available from: https://ejournals.umma.ac.id/index.php/karts/article/view/929.

14. BNPB Kabupaten Sragen. Sragen kekeringan saat beberapa wilayah lain alami banjir. Minanews [Internet]. 2020. [cited 2025 April 17]. Available from: https://minanews.net/sragen-alami-kekeringan-saat-beberapa-wilayah-lain-alami-banjir/.

15. BPS Kabupaten Sragen. Kabupaten Sragen dalam angka 2021. Badan Pusat Statistik Kabupaten Sragen [Internet]. 2021. [cited 2025 April 17]. Available from: https://sragenkab.bps.go.id/id/publication/2021/02/26/2774bd589e365acf0be23cd2/kabupaten-sragen-dalam-angka-2021.html.

16. Aji N P W. Analisis urban heat island di Kabupaten Sragen tahun 2020. Geadidaktika [Internet]. 2023. [cited 2025 April 17]; 3(2): 167–82. Available from: https://jurnal.uns.ac.id/geadidaktika/article/view/76852.

17. Aripbilah S N, Suprapto H. Analisis kekeringan di Kabupaten Sragen dengan metode Palmer, Thornthwaite, dan Standardized Precipitation Index. J Sumber Daya Air [Internet]. 2021. [cited 2025 April 17]; 17(2): 111–24. Available from: https://jurnalsda.pusair-pu.go.id/index.php/JSDA/article/view/742.

18. Safitri A, Purnamasari E, Rahmawati F, Dasairy H F, Vebiani N A. Promosi kesehatan tentang pencegahan demam berdarah dengue pada remaja di Karang Taruna “Tunas Muda” Desa Sukomarto, Kecamatan Sidoharjo, Kabupaten Sragen. J Pengabdian Komunitas [Internet]. 2023. [cited 2025 April 17]; 2(03): 88–96. Available from: https://jurnalpengabdiankomunitas.com/index.php/pengabmas/article/view/56/70.

19. Awatara I G P D, Susila L N, Saryanti E. Pendampingan program kampung iklim (Proklim) di Desa Bon Agung, Kecamatan Tanon, Kabupaten Sragen. Wasana Nyata [Internet]. 2023. [cited 2025 April 17]; 7(2):93–7. Available from: https://e-journal.stie-aub.ac.id/index.php/wasana_nyata/article/view/1601.

20. Chamidah N, Lestari B. Analisis Regresi Nonparametrik dengan Perangkat Lunak R. Airlangga University Press (AUP) [Internet]. 2022. [cited 2025 April 17]. Available from: https://omp.unair.ac.id/aup/catalog/book/888.

21. Chamidah N, Lestari B, Saifudin T. Modeling of blood pressures based on stress score using least square spline estimator in bi-response nonparametric regression. Int J Innov Creat Change (IJICC) [Internet]. 2019. [cited 2025 April 21]; 5(3):1200–16. Available from: https://www.ijicc.net/images/Vol_5_Iss_3/Part_2_2020/5321_Chamidah_2019_E_R.pdf.

22. Fatmawati, Budiantara I N, Lestari B. Comparison of smoothing and truncated splines estimators in estimating blood pressure models. Int J Innov Creat Change (IJICC) [Internet]. 2019. [cited 2025 April 21]; 5(3):1177–99. Available from: https://repository.unair.ac.id/114278/1/C14.%20Fulltext.pdf.

23. Chamidah N, Lestari B, Massaid A, Saifudin T. Estimating mean arterial pressure affected by stress scores using spline nonparametric regression model approach. Commun Math Biol Neurosci [Internet].2020. [cited 2025 April 21]; 2020(72): 1–12. Available from: https://scik.org/index.php/cmbn/article/view/4963.

24. Chamidah N, Yonani Y S, Ana E, Lestari B. Identification the number of Mycobacterium Tuberculosis based on sputum image using local linear estimator. Bull Electric Eng Informatics (BEEI) [Internet]. 2020. [cited 2025 April 21]; 9(5): 2109 –16. Available from: https://doi.org/10.11591/eei.v9i5.2021.

25. Tohari A, Chamidah N, Fatmawati, Lestari B. Modelling the number of HIV and AIDS cases in East Java using biresponse multipredictor negative binomial regression based on local linear estimator. Commun Math Biol Neurosci [Internet]. 2021. [cited 2025 April 21]; 2021(73): 1–17. Available from: https://scik.org/index.php/cmbn/article/view/5652.

26. Lestari B, Chamidah N, Aydin D, Yilmaz E. Reproducing kernel Hilbert space approach to multiresponse smoothing spline regression function. Symmetry [Internet]. 2022. [cited 2025 April 21]; 14(11) 2227: 1–22. Available from: https://www.mdpi.com/2073-8994/14/11/2227.

27. Aydin D, Yilmaz E, Chamidah N, Lestari B, Budiantara I N. Right-censored nonparametric regression with measurement error. Metrika (Int J Theor Appl Stats) [Internet]. 2024. [cited 2025 April 21]; 87(3). Available from: https://doi.org/10.1007/s00184-024-00953-5.

28. Chamidah N, Lestari B, Saifudin T, Rulaningtyas R, Wardhani P, Budiantara I N, Aydin D. Determining the number of malaria parasites on blood smears microscopic images using penalized spline nonparametric Poisson regression. Commun Math Biol Neurosci [Internet]. 2024. [cited 2025 April 21]; 2024(60): 1-19. Available from: https://scik.org/index.php/cmbn/article/view/8578.

29. Chamidah N, Lestari B, Budiantara I N, Aydin D. (2024). Estimation of multiresponse multipredictor nonparametric regression model using mixed estimator. Symmetry [Internet]. 2024. [cited 2025 April 21]; 16(4) 386:1–25. Available from: https://www.mdpi.com/2073-8994/16/4/386.

30. Chamidah N, Lestari B, Larasati T N, Muniroh L. (2024). Designing Z-score standard growth charts based on height-for-age of toddlers using local linear estimator for determining stunting. AIP Conf Proc [Internet]. 2024. [cited 2025 April 21]; 3083(1) 030002. Available from: https://doi.org/10.1063/5.0225156.

31. Chamidah N, Lestari B, Susilo H, Alsagaff M Y, Budiantara I N, Aydin D. Spline estimator in nonparametric ordinal logistic regression model for predicting heart attack risk. Symmetry [Internet] 2024. [cited 2025 April 21]: 16(11) 1440: 1-23. Available from: https://www.mdpi.com/2073-8994/16/11/1440.

32. Chamidah N, Lestari B, Wulandari A Y, Muniroh L. Z-score standard growth chart design of toddler weight using least square spline semiparametric regression. AIP Conf Proc [Internet]. 2021. [cited 2025 April 21]; 2329: 060031. Available from: https://doi.org/10.1063/5.0225156.

33. Chamidah N, Lestari B, Budiantara I N, Saifudin T, Rulaningtyas R, Aryati A, Wardani P, Aydin D. Consistency and asymptotic normality of estimator for parameters in multiresponse multipredictor semiparametric regression model. Symmetry [Internet]. 2022. [cited 2025 April 21]; 14(2) 336:1-18. Available from: https://www.mdpi.com/2073-8994/14/2/336.

34. Chamidah N, Zaman B, Muniroh L, Lestari B. Multiresponse semiparametric regression model approach to standard growth charts design for assessing nutritional status of East Java toddlers. Commun Math Biol Neurosci [Internet] 2023. [cited 2025 April 21]; 2023(30): 1-23. Available from: https://scik.org/index.php/cmbn/article/view/7814.

35. Lestari B, Chamidah N, Budiantara I N, Aydin D. (2023). Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator. J King Saud Univ-Sci [Internet]. 2023. [cited 2025 April 21]; 35(5): 102664. Available from: https://doi.org/10.1016/j.jksus.2023.102664.

36. Aydin D, Yilmaz E, Chamidah N, Lestari B. Right-censored partially linear regression model with error in variables: application with carotid endarterectomy dataset. Int J Biostatistics [Internet]. 2023. [cited 2025 April 21]; 20(1): 1–34. Available from: https:/doi.org/10.1515/ijb-2022-0044.

37. Utami T W, Chamidah N, Saifudin T, Lestari B, Aydin D. Estimation of biresponse semiparametric regression model for longitudinal data using local polynomial kernel estimator. Symmetry [Internet]. 2025. [cited 2025 April 21]; 17(3) 392: 1-22. Available from: https://www.mdpi.com/2073-8994/17/3/392.

38. Selingerova I, Katina S, Horova I. Comparison of parametric and semiparametric survival regression models with kernel estimation. J Stat Comput Simul [Internet]. 2021. [cited 2025 April 21]; 91(13): 2717–39. Available from: https://www.doi.org/10.1080/00949655.2021.1906875.

39. Lestari B, Fatmawati, Budiantara I N, Chamidah N. Smoothing parameter selection method for multiresponse nonparametric regression model using smoothing spline and kernel estimators approaches. J Phys: Conf Ser [Internet]. 2019. [cited 2025 April 21]; 1397(1):012064. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1397/1/012064.

40. Eubank R L. Nonparametric Regression and Spline Smoothing. CRC press; Boca Raton, 1999. Available from: https://doi.org/10.1201/9781482273144.

41. Chamidah N, Zaman B, Muniroh L, Lestari B. Designing local standard growth charts of children in East Java province using a local linear estimator. Int J Innov Create Change (IJICC) [Internet]. 2020. [cited 2025 April 21]; 13(1): 45–67. Available from: https://www.ijicc.net/images/vol_13/13104_Chamidah_2020_E_R.pdf.

42. Chamidah N, Gusti K H, Tjahjono E, Lestari B. Improving of classification accuracy of cyst and tumor using local polynomial estimator. Telkomnika (Telecommunication Computing Electronics and Control) [Internet]. 2019. [cited 2025 April 21]; 17(3): 1492-500. Available from: https://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/12240.

43. Pane R, Budiantara I N, Zain I, Otok B W. Parametric and nonparametric estimators in Fourier series semiparametric regression and their characteristics. Appl Math Sci [Internet]. 2014. [cited 2025 April 21]; 8(102): 5053–64. Available from: http://dx.doi.org/10.12988/ams.2014.46472.

44. Khairunnisa L R, Prahutama A, Santoso R. Pemodelan regresi semiparametrik dengan pendekatan deret Fourier (Studi kasus: pengaruh indeks Dow Jones dan BI rate terhadap indeks harga saham gabungan). J Gaussian [Internet]. 2020. [cited 2025 April 21]; 9(1): 50–63. Available from: https://ejournal3.undip.ac.id/index.php/gaussian/article/view/27523.

45. Yao W, Weng Y, Catchmark J M. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose [Internet]. 2020. [cited 2025 April 21]; 27(10): 5563–79. Available from: https://www.doi.org/10.1007/s10570-020-03177-8.

46. Chamidah N, Febriana S A, Ariyanto R A, Sahawaly R. Fourier series estimator for predicting international market price of white sugar. AIP Conf Proc [Internet]. 2021. [cited 2025 April 21]; 2329(1): 060035. Available from: https://www.doi.org/ 10.1063/5.0042287.

47. Pasarella M D, Sifriyani S, Amijaya F D T. Nonparametrik regression model estimation with the Fourier series approach and its application to the accumulative Covid-19 data in Indonesia. BAREKENG [Internet]. 2022. [cited 2025 April 21]; 16(4): 1167–74. Available from: https://www.doi.org/ 10.30598/barekengvol16iss4pp1167-1174.

48. Amri I F, Chamidah N, Saifudin T, Purwanto D, Fadlurohman A, Ningrum A F, Amri S. Prediction of extrem weather using nonparametric regression approach with Fourier series estimators. Data and Metadata [Internet]. 2024. [cited 2025 April 21]; 4 (319): 1–12. Available from: https://www.doi.org/10.56294/dm2024319.

49. Gao J. Nonlinear Time Series: Semiparametric and Nonparametric Methods. CRC Press; Boca Raton, 2007. Available from: https://www.researchgate.net/publication/329483723_Nonlinear_time_series_Semiparametric_and_nonparametric_methods.

50. Fan J Q, Qi L, Tong X. Penalized least squares estimation with weakly dependent data. Sci China Math [Internet]. 2016. [cited 2025 April 21]; 59(12): 2335–54. Available from: https://www.doi.org/10.1007/s11425-016-0098-x.

51. Wang H, Li R, Tsai C L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika [Internet]. 2007. [cited 2025 April 21]; 94(3): 553–68. Available from: https://doi.org/10.1093/biomet/asm053.

52. Moreno J J M, Pol A P, Abad A S, Blasco B C. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema [Internet]. 2013. [cited 2025 April 21]; 25(4): 500–6. Available from: https://doi.org/ 10.7334/psicothema2013.23.

53. Bilodeau M. Fourier smoother and additive models. Canadian J Stats [Internet]. 2008. [cited 2025 April 20]; 20(3):257–69. Available from: https://doi.org/10.2307/3315313.

54. Baltazar J C, Claridge D. Study of cubic splines and Fourier series as interpolation techniques for filling in short periods of missing building energy use and weather data. Journal of Solar Energy Engineering [Internet]. 2002. [cited 2025 April 20]; 128(2). Available from: https://doi.org/10.1115/SED2002-1031.

Downloads

Published

2025-04-25

Issue

Section

Original

How to Cite

1.
Amri IF, Chamidah N, Saifudin T, Lestari B, Aydin D. Forecasting Temperature of Earth Surface in Sragen Regency Using Semiparametric Regression Based on Penalized Fourier Series Estimator. Data and Metadata [Internet]. 2025 Apr. 25 [cited 2025 May 23];4:890. Available from: https://dm.ageditor.ar/index.php/dm/article/view/890