Nonparametric Bi-Response Ordinal Logistic Regression Model for Diabetes Mellitus and Hypertension Risks Based on Multivariate Adaptive Regression Spline
DOI:
https://doi.org/10.56294/dm2025912Keywords:
Nonparametric Bi-Response Ordinal Logistic Regression, Diabetes Mellitus, MARS, BMI, High Blood PressureAbstract
This study discusses the application of nonparametric regression for bi-response ordinal logistic modeling based on the Multivariate Adaptive Regression Spline (MARS) estimator in assessing the risk of diabetes mellitus and hypertension. The MARS estimator provides greater flexibility by allowing for nonlinearity and interactions among predictors, making it well-suited for modeling health-related risk factors. Parameter estimation in this study is conducted using the Maximum Likelihood Estimation (MLE) method. However, due to the non-linearity of the first derivative of the log-likelihood function, the Berndt-Hall-Hall-Hausman (BHHH) numerical iteration method is applied to obtain parameter estimates. The complexity of the likelihood function poses challenges in constructing the Hessian matrix, necessitating an approximation of the second derivative using the first derivative in the BHHH method. The analysis identifies Age, Body Mass Index (BMI), and Total Cholesterol as significant predictor variables influencing the risk of diabetes mellitus and hypertension. Model evaluation is carried out using accuracy, the Area Under the Curve (AUC), and the Apparent Error Rate (APER). The results demonstrate an accuracy of 82.44%, indicating strong classification performance. Additionally, the AUC value of 73.42% suggests the model falls within the good category, while the APER value of 17.56% confirms the model’s stability and reliability. The findings suggest that the MARS-based bi-response ordinal logistic regression model effectively captures the relationship between significant risk factors of diabetes mellitus and hypertension.
References
1. Chamidah N, Lestari B, Susilo H, Alsagaff MY, Budiantara IN, Aydin D. Spline Estimator in Nonparametric Ordinal Logistic Regression Model for Predicting Heart Attack Risk. Symmetry (Basel) [Internet]. 2024 Oct 30;16(11):1440. Available from: https://doi.org/10.3390/sym16111440
2. Lestari B, Chamidah N, Aydin D, Yilmaz E. Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function. Symmetry 2022, 14(11): 2227. https://doi.org/10.3390/sym14112227.
3. Eubank RL. Spline smoothing and nonparametric regression. (No Title). 1988.
4. Chamidah N, Lestari B, Budiantara IN, Aydin D. Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator. Symmetry 2024, 16(4): 386. https://doi.org/10.3390/sym16040386.
5. Fernandes AAR, Budiantara IN, Otok BW, Suhartono. Spline estimator for bi-responses nonparametric regression model for longitudinal data. Appl Math Sci [Internet]. 2014;8:5653–65. Available from: http://www.m-hikari.com/ams/ams-2014/ams-113-116-2014/47566.html.
6. Aydin D, Yilmaz E, Chamidah N, Lestari B, Budiantara IN. Right-censored nonparametric regression with measurement error. Metrika 2024, 87(3). https://doi.org/10.1007/s00184-024-00953-5.
7. Ampulembang AP, Otok BW, Rumiati AT, Budiasih. Bi-responses nonparametric regression model using MARS and its properties. Appl Math Sci [Internet]. 2015;9:1417–27. Available from: http://www.m-hikari.com/ams/ams-2015/ams-29-32-2015/5127.html
8. Sriliana I, Budiantara IN, Ratnasari V. The performance of mixed truncated spline-local linear nonparametric regression model for longitudinal data. MethodsX. 2024;12:102652.
9. Sriliana I, Budiantara IN, Ratnasari V. A truncated spline and local linear mixed estimator in nonparametric regression for longitudinal data and its application. Symmetry (Basel). 2022;14(12):2687.
10. Juniar MA, Fania A, Ulya D, Ramadhan R, Chamidah N. Modelling Crime Rates in Indonesia Using Truncated Spline Estimator. BAREKENG J Ilmu Mat dan Terap. 2024;18(2):1201–16.
11. Hidayati L, Chamidah N, Budiantara IN. Spline truncated estimator in multiresponse semiparametric regression model for computer based national exam in West Nusa Tenggara. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2019. p. 52029.
12. Chamidah N, Lestari B, Saifudin T. Modeling of blood pressures based on stress score using least square spline estimator in bi-response nonparametric regression. Int J Innov Creat Change. 2019;5(3):1200–16.
13. Chamidah N, Lestari B, Budiantara IN, Saifudin T, Rulaningtyas R, Aryati A, Wardani P, Aydin D. Consistency and Asymptotic Normality of Estimator for Parameters in Multiresponse Multipredictor Semiparametric Regression Model. Symmetry 2022, 14(2): 336. https://doi.org/10.3390/sym14020336.
14. Gackowski M, Szewczyk-Golec K, Pluskota R, Koba M, Mądra-Gackowska K, Woźniak A. Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Antitumor Activity of Anthrapyrazole Derivatives. Int J Mol Sci [Internet]. 2022 May 4;23(9):5132. Available from: https://www.mdpi.com/1422-0067/23/9/5132.
15. Hasyim M, Chamidah N, Saifudin T. Estimation of uniresponse ordinal logistic nonparametric regression model based on multivariate adaptive regression spline. In 2024. p. 020010. Available from: https://pubs.aip.org/aip/acp/article-lookup/doi/10.1063/5.0242167.
16. Hasyim M, Prastyo DD. Modelling lecturer performance index of private university in Tulungagung by using survival analysis with multivariate adaptive regression spline. J Phys Conf Ser [Internet]. 2018 Mar;974:012065. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/974/1/012065.
17. Pramudita DT, Budiantara IN, Ratnasari V. Comparison of selection optimal knot using Cross Validation and Generalized Cross Validation for nonparametric regression truncated spline longitudinal data. In 2024. p. 020011. Available from: https://pubs.aip.org/aip/acp/article-lookup/doi/10.1063/5.0211356.
14. Roy SS, Roy R, Balas VE. Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew Sustain Energy Rev. 2018;82:4256–68.
15. Friedman JH, Roosen CB. An introduction to multivariate adaptive regression splines. Stat Methods Med Res. 1995.
16. Otok BW, Rumiati AT, Ampulembang AP, Azies H Al. ANOVA Decomposition and Importance Variable Process in Multivariate Adaptive Regression Spline Model. Int J Adv Sci Eng Inf Technol [Internet]. 2023 Jun 5;13(3):928–34. Available from: https://ijaseit.insightsociety.org/index.php/ijaseit/article/view/17674.
17. Raykov T, Marcoulides GA. An introduction to applied multivariate analysis. Routledge; 2008.
18 Aydin D, Chamidah N, Lestari B, Mohammad S, Yilmaz E. Local Polynomial Estimation for multi-response semiparametric regression models with right censored data. Communications in Statistics-Simulation and Computation, 2025, 54(3). https://doi.org/10.1080/03610918.2025.2476595.
19. Utami TW, Chamidah N, Saifudin T, Lestari B, Aydin D. Estimation of Biresponse Semiparametric Regression Model for Longitudinal Data Using Local Polynomial Kernel Estimator. Symmetry 2025, 17(3): 392. https://doi.org/10.3390/sym17030392.
20. Lestari B, Chamidah N, Budiantara IN, Aydin D. Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator. Journal of King Saud University – Science 2023, 35: 102664. https://doi.org/10.1016/j.jksus.2023.102664.
21. Aydin D, Yilmaz E, Chamidah N, Lestari B. Right-censored partially linear regression model with error in variables: application with carotid endarterectomy dataset. International Journal of Biostatistics, 2023, 20(1), pp. 1–34. https://doi.org/10.1515/ijb-2022-0044.
22. Agresti A. An Introduction to Categorical Data Analysis: Second Edition. An Introduction to Categorical Data Analysis: Second Edition. 2006. 1–356 p.
23. Kishartini K, Safitri D, Ispriyanti D. Multivariate Adaptive Regression Splines (MARS) Untuk Klasifikasi Status Kerja Di Kabupaten Demak. J Gaussian. 2014;3(4):711–8.
24. Annur M, Dahlan JA, Agustina F. Penerapan Metode Multivariate Adaptive Regression Spline (MARS) untuk Menentukan Faktor yang Mempengaruhi Masa Studi Mahasiswa FPMIPA UPI. J EurekaMatika. 2015;3(1):135–55.
25. Binadari R, Wilandari Y, Suparti S. Perbandingan Metode Regresi Logistik Biner Dan Multivariate Adaptive Regression Spline (Mars) Pada Peminatan Jurusan SMA (Studi Kasus SMA Negeri 2 Semarang). J Gaussian. 2015;4(4):987–96.
26. Serrano NB, Sánchez AS, Lasheras FS, Iglesias-Rodríguez FJ, Valverde GF. Identification of gender differences in the factors influencing shoulders, neck and upper limb MSD by means of multivariate adaptive regression splines (MARS). Appl Ergon. 2020;82:102981.
27. Nisai SF, Budiantara IN. Analisis Survival dengan Pendekatan Multivariate Adaptive Regression Splines pada Kasus Demam Berdarah Dengue (DBD). J Sains dan Seni ITS. 2012;1(1):15838.
28. Wang L, Wu C, Gu X, Liu H, Mei G, Zhang W. Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bull Eng Geol Environ. 2020;79:2763–75.
29. Ampulembang AP, Otok BW, Rumiati AT, Budiasih. Modeling of Welfare Indicators in Java Island Using Biresponses MARS. Int J Appl Math Stat. 2016;54(2):66–75.
30. Milborrow S. Derived from mda: Mars by T. Hastie and R. Tibshirani. earth: Multivariate adaptive regression splines. R package version 4.4. 3. Retrived from https://cran. r-project. org/web/packages/earth/index. html; 2015.
31. Ampulembang AP. Pengembangan Model Regresi Nonparametrik Birespon Kontinu Menggunakan Metode MARS. Institut Teknologi Sepuluh Nopember; 2017.
32. Eyduran E, Çanga D, Sevgenler H, Çelik AE. Use of Bootstrap Aggregating Bagging MARS to Improve Predictive Accuracy for Regression Type Problems. presented at the 11. Uluslararası İstatistik Kongresi. 2019;
33. Kemenkes. Laporan Riskesdas 2018 Nasional.pdf. Lembaga Penerbit Balitbangkes. 2018. p. hal 156.
34. Schutta MH. Diabetes and hypertension: epidemiology of the relationship and pathophysiology of factors associated with these comorbid conditions. J Cardiometab Syndr. 2007;2(2):124–30.
35. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107843.
36. Yildiz M, Esenboğa K, Oktay AA. Hypertension and diabetes mellitus: highlights of a complex relationship. Curr Opin Cardiol. 2020;35(4):397–404.
37. Waeber B, Feihl F, Ruilope L. Diabetes and hypertension. Blood Press. 2001;10(5–6):311–21.
38. Hardine DR, Abdullah A, Ikbal M, Chamidah N. Pemodelan Kadar Gula Darah dan Tekanan Darah Pada Remaja Penderita Diabetes Miletus Tipe II dengan pendekatan Regresi Nonparametrik Birespon Berdasarkan Estimator Spline. In: Seminar Nasional Matematika dan Aplikasiny. 2017. p. 308–12.
39. Committee PP, Classification A. Standards of medical care in diabetes-2010. Diabetes Care. 2010;33(SUPPL. 1).
40. Mayawi M, Nurhayati N, Talib T, Bustan AW, Laamena NS. Ordinal Logistic Regression Analysis of Factors that Affecting the Blood Sugar Levels Diabetes Mellitus Patients. Pattimura Int J Math. 2023;2(1):33–42.
41. Molenberghs G, Lesaffre E. Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution. J Am Stat Assoc. 1994;89(426):633.
42. Society IB. Global Cross-Ratio Models for Bivariate , Discrete , Ordered Responses Author ( s ): Jocelyn R . Dale Published by : International Biometric Society Stable URL : http://www.jstor.org/stable/2530704. 2009;42(4):909–17.
43. Bhatia AS, Mukherjee BN. Comparison of Some Multinomial Classification Rules: A Case Study. Behaviormetrika. 1993 Jan;20:91–106.
44. Friedman JH. Estimating Functions of Mixed Ordinal and Categorical Variables Using Adaptive Splines. 1993;(108):73–113.
45. Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. 2007. p. 671–757.
46. Fahmy AM. Confusion Matrix in Three-class Classification Problems: A Step-by-Step Tutorial. J Eng Res. 2023;7(1):0–0.
47. Rey deCastro B. Cumulative ROC curves for discriminating three or more ordinal outcomes with cutpoints on a shared continuous measurement scale. PLoS One. 2019;14(8):1–16.
48. Hand DJ, Till RJ. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Mach Learn. 2001;45:171–86.
49. Šimundić AM. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC. 2009 Jan;19:203–11.
50. Härdle W, Simar L. Applied Multivariate Statistical Analysis. Appl Multivar Stat Anal. 2003;(April).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nur Chamidah, Maylita Hasyim, Toha Saifudin, Budi Lestari (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.