Energy Analysis of Forced-Air Solar Panels for a Fruit Dehydration Oven
DOI:
https://doi.org/10.56294/dm2025913Keywords:
solar energy, flat solar collector, food dehydration, solar collector sizingAbstract
This article presents the design, construction, and energy analysis of three forced air solar collectors, which act as an auxiliary energy source for a fruit dehydrator with a capacity of 30 kg. The study began with a review of concepts related to solar energy, including solar collectors and finally the food dehydration process. In the construction stage, the sizing of the collectors is determined by 5.3 m² of black-painted copper for the absorbers, which will allow for the dehydration of batches of 30 kg of pineapple in a period of 18 hours. In the analysis, the results obtained indicate that the implementation of these solar collectors generates an annual savings of $1,135 in the operational costs of the dehydrator, highlighting the efficiency and economic viability of using solar energy in this context.
References
1. Azam MM, Eltawil MA, Amer BMA. Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy [Internet]. 2020 Sep 6;212:118764–4. https://doi.org/10.1016/j.energy.2020.118764
2. Iza JT, Pazmiño E, Quinatoa C, Salazar R. Evaluation of Solar Panel Integration in Power Control Distribution Networks. Revista Politécnica [Internet]. 2024 Dec 31;54(3):67–75. https://doi.org/10.33333/rp.vol54n3.07
3. Ali OM. An experimental investigation of energy production with a hybrid photovoltaic/ thermal collector system in Duhok city. Case Studies in Thermal Engineering [Internet]. 2020 May 12; 21:100652–2.
4. Nitin Kumar, Anil Panghal, MK Garg. Solar Drying: Principles and Applications. 2022 Mar 28;179–96. https://doi.org/10.1002/9781119776437.ch6
5. López-Vidaña Erick César, César-Munguía Ana Lilia, Octavio GV, Isaac PF, Brito Orosco Rogelio. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy [Internet]. 2019 Sep 7;147:845–55. https://doi.org/10.1016/j.renene.2019.09.018
6. Mezquita PC, López AÁ, Muñoz WB. Effect of Drying on Lettuce Leaves Using Indirect Solar Dryer Assisted with Photovoltaic Cells and Thermal Energy Storage. Processes [Internet]. 2020 feb 3;8(2):168–8. https://doi.org/10.3390/pr8020168
7. Yuan Y, Ma K, Xu Y, Yang L, Li Y, Lin X, et al. Research on operation performance of multi-heat source complementary system of combined drying based on TRNSYS. Renewable Energy [Internet]. 2022 May 5; 192:769–83. https://doi.org/10.1016/j.renene.2022.05.001
8. Masoud Iranmanesh, Hadi Samimi Akhijahani, Saleh M. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy [Internet]. 2019 Jun 13; 145:1192–213. https://doi.org/10.1016/j.renene.2019.06.038
9. Getahun E, Delele MA, Nigus Gabbiye, Fanta SW, Demissie P, Maarten Vanierschot. Importance of integrated CFD and product quality modeling of solar dryers for fruits and vegetables: A review. Solar Energy [Internet]. 2021 Mar 30; 220:88–110. https://doi.org/10.1016/j.solener.2021.03.049
10. Abderrahmane Benhamza, Abdelghani Boubekri, Atia A, Tarik Hadibi, Müslüm Arıcı. Drying uniformity analysis of an indirect solar dryer based on computational fluid dynamics and image processing. Sustainable Energy Technologies and Assessments [Internet]. 2021 Jul 28; 47:101466–6. https://doi.org/10.1016/j.seta.2021.101466
11. Erdem Çiftçi, Ataollah Khanlari, Adnan Sözen, İpek Aytaç, Azim Doğuş Tuncer. Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renewable Energy [Internet]. 2021 Aug 27; 180:410–23. https://doi.org/10.1016/j.renene.2021.08.081
12. Ezzeddine Touti, Majed Masmali, Fterich M, Houssam Chouikhi. Experimental and numerical study of the PVT design impact on the electrical and thermal performances. Case Studies in Thermal Engineering [Internet]. 2023 Jan 16; 43:102732–2. https://doi.org/10.1016/j.csite.2023.102732
13. Kong X, Zhang L, Li H, Wang Y, Fan M. Experimental thermal and electrical performance analysis of a concentrating photovoltaic/thermal system integrated with phase change material (PV/T-CPCM). Solar Energy Materials and Solar Cells [Internet]. 2021 Oct 9234:111415–5. https://doi.org/10.1016/j.solmat.2021.111415
14. Raouf Amouiri, Azeddine Belhamri. CFD investigations on the behavior of a solar dryer used for medicinal herbs dehydration under climatic conditions of Constantine, Algeria. Materials Today Proceedings [Internet]. 2022 Jan 1; 51:2123–30. https://doi.org/10.1016/j.matpr.2021.12.475
15. S. Madhankumar, Viswanathan K. Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device. Applied Energy [Internet]. 2022 Aug 2; 324:119746–6. https://doi.org/10.1016/j.apenergy.2022.119746
16. Das B, Jayanta Deb Mondol, Debnath S, Pugsley A, Smyth M, A. Zacharopoulos. Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation. Renewable Energy [Internet]. 2020 Jan 16; 152:567–78. https://doi.org/10.1016/j.renene.2020.01.056
17. INEN. Requisitos de los productos deshidratados. 2015.
18. Consejo Nacional de Electricidad. Atlas solar del Ecuador con fines de generación eléctrica. Quito. 2008
19. Mercer, Donald. International Union of Food Science and Technology. 2012. disponible en: http://iufost.org/iufostftp/Guide%20to%20Drying-Full.pdf
20. Instituto Nacional de Metereología e Hidrología. Anuario meteorológico Nro 52-2012. 2015. Disponible en: http://www.serviciometeorologico.gob.ec/wp-content/uploads/anuarios/meteorologicos/Am%202012.pdf
21. AEE INTEC. Solar thermal world. 2009. Disponible en: http://www.solarthermalworld.org/sites/gstec/files/Solar%20Thermal%20Systems%20Manual.pdf
Published
Issue
Section
License
Copyright (c) 2025 Roberto Salazar-Achig (Translator); Lauro Díaz (Author); Jorge Gavilanes, Carlos Gallardo, José Díaz, Diego L. Jiménez J (Translator)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.