Customer Sentiment Analysis for Food and Beverage Development in Restaurants using AI in Jordan
DOI:
https://doi.org/10.56294/dm2025922Keywords:
Customer Sentiment Analysis, Food and Beverage Industry, Hospitality Industry, Online ReviewsAbstract
Introduction: customer sentiment analysis is a vital tool for understanding consumer preferences and enhancing service quality in the food and beverage industry. Online reviews significantly influence customer decisions, making it essential for businesses to analyze sentiment trends and manage their digital reputation effectively. This study examines customer sentiment across different establishment types and digital platforms in Jordan, providing insights into sentiment patterns and their strategic implications.
Method: a dataset of 384 customer reviews from various restaurants and hotels was analyzed using a rule-based sentiment classification approach. Sentiments were categorized as positive, neutral, or negative. To assess sentiment variations, an ANOVA test was conducted to compare establishment types, and a Chi-Square test was performed to examine differences across digital platforms.
Results: findings indicate that luxury hotels and fine dining establishments receive more positive sentiment, while budget hotels and fast food chains experience higher negative sentiment. However, the ANOVA test showed no statistically significant sentiment differences across establishment types, suggesting that all businesses receive a mix of sentiment categories. The Chi-Square test confirmed significant sentiment differences across platforms, with TripAdvisor attracting the most positive reviews, Facebook and Google Reviews showing balanced sentiment, and Twitter experiencing the highest negative sentiment.
Conclusion: these findings emphasize the importance of platform-specific digital reputation management. Businesses should strategically engage with customers on different platforms, address complaints proactively, and utilize AI-driven sentiment analysis tools to improve customer satisfaction. Future research should explore AI-based predictive analytics and sentiment monitoring for enhancing service quality in the hospitality industry.
References
Floyd, K., Freling, R., Alhoqail, S. A., Cho, H. Y., & Freling, T. H. (2014). How Online Product Reviews Affect Retail Sales: A Meta-analysis. In Journal of Retailing (Vol. 90, Issue 2, p. 217). Elsevier BV. https://doi.org/10.1016/j.jretai.2014.04.004 DOI: https://doi.org/10.1016/j.jretai.2014.04.004
Ayyalsalman KM, Alolayyan MN, Alshurideh MT, Al-Daoud K, Al-Hawary SIS. Mathematical Model to Estimate The Effect of Authentic Leadership Components on Hospital Performance [Internet]. Vol. 18, Appl. Math; 2024 [cited 2025 Feb]. P. 701. DOI: https://doi.org/10.18576/amis/180402
Saleh, M. H., Garaibeh, A. T., Shehadeh, A., & Jaber, J. J. (2019). The Role of Tourism Activity in Economic Growth by Using Some Econometric Models Evidence from Jordan. In Modern Applied Science (Vol. 13, Issue 6, p. 1). Canadian Center of Science and Education. https://doi.org/10.5539/mas.v13n6p1 DOI: https://doi.org/10.5539/mas.v13n6p1
Mohammad AAS, Mohammad SIS, Al‑Daoud KI, Al Oraini B, Vasudevan A, Feng Z. Optimizing the Value Chain for Perishable Agricultural Commodities: A Strategic Approach for Jordan [Internet]. Vol. 6, Research on World Agricultural Economy; 2025 [cited 2025 Feb]. p. 465. DOI: https://doi.org/10.36956/rwae.v6i1.1571
Kn, L., Sp, D., Hs, Y., & Megha, V. (2019). A Design on Bank Customer Complaints Analysis using Natural Language Processing. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, p. 522). Blue Eyes Intelligence Engineering and Sciences Publication. https://doi.org/10.35940/ijitee.b1038.1292s19 DOI: https://doi.org/10.35940/ijitee.B1038.1292S19
Mohammad AAS, Mohammad SIS, Al Oraini B, Vasudevan A, Alshurideh MT. Data security in digital accounting: A logistic regression analysis of risk factors [Internet]. Vol. 8, International Journal of Innovative Research and Scientific Studies; 2025 [cited 2025 Feb]. p. 2699. DOI: https://doi.org/10.53894/ijirss.v8i1.5044
Alawamleh, M., Al-Hussaini, M., & Ismail, L. B. (2022). Open innovation in the food industry: trends and barriers — a case of the Jordanian food industry. In Journal of global entrepreneurship research (Vol. 12, Issue 1, p. 279). Springer Science+Business Media. https://doi.org/10.1007/s40497-022-00312-6 DOI: https://doi.org/10.1007/s40497-022-00312-6
Mohammad AAS, Al-Daoud KI, Rusho MA, Alkhayyat A, Doshi H, Dey P, Kiani M. Modeling polyethylene glycol density using robust soft computing methods [Internet]. Vol. 210, Microchemical Journal; 2025 [cited 2025 Feb]. p. 112815. DOI: https://doi.org/10.1016/j.microc.2025.112815
Liu, J., Yu, Y., Mehraliyev, F., Hu, S., & Chen, J. (2022). What affects the online ratings of restaurant consumers: a research perspective on text-mining big data analysis. In International Journal of Contemporary Hospitality Management (Vol. 34, Issue 10, p. 3607). Emerald Publishing Limited. https://doi.org/10.1108/ijchm-06-2021-0749 DOI: https://doi.org/10.1108/IJCHM-06-2021-0749
Al-Oraini B, Khanfar IA, Al-Daoud K, Mohammad SI, Vasudevan A, Fei Z, Al-Azzam MKA. Determinants of Customer Intention to Adopt Mobile Wallet Technology [Internet]. Vol. 18, Appl. Math; 2024 [cited 2025 Feb]. P. 1331. DOI: https://doi.org/10.18576/amis/180614
Venkatesakumar, R., Vijayakumar, S., Riasudeen, S., Madhavan, S., &Rajeswari, B. (2020). Distribution characteristics of star ratings in online consumer reviews. In Vilakshan – XIMB Journal of Management (Vol. 18, Issue 2, p. 156). Emerald Publishing Limited. https://doi.org/10.1108/xjm-10-2020-0171 DOI: https://doi.org/10.1108/XJM-10-2020-0171
Mohammad AAS. The impact of COVID-19 on digital marketing and marketing philosophy: evidence from Jordan [Internet]. Vol. 48, International Journal of Business Information Systems; 2025 [cited 2025 Feb]. p. 267. DOI: https://doi.org/10.1504/IJBIS.2025.144382
Zhao, B. (2017). Web Scraping. In Springer eBooks (p. 1). Springer Nature. https://doi.org/10.1007/978-3-319-32001-4_483-1 DOI: https://doi.org/10.1007/978-3-319-32001-4_483-1
Mohammad AAS, Al-Hawary SIS, Hindieh A, Vasudevan A, Al-Shorman MH, Al-Adwan AS, Turki Alshurideh M, Ali, I. Intelligent Data-Driven Task Offloading Framework for Internet of Vehicles Using Edge Computing and Reinforcement Learning [Internet]. Vol. 4, Data and Metadata; 2025 [cited 2025 Feb]. P. 521. DOI: https://doi.org/10.56294/dm2025521
Rababah, O. (2019). A Novel Machine Learning System for Sentiment Analysis and Extraction (p. 387). https://doi.org/10.5121/csit.2019.91330 DOI: https://doi.org/10.5121/csit.2019.91330
Agrawal, M., &Moparthi, N. R. (2021). A Comprehensive Survey on Aspect Based Word Embedding Models and Sentiment Analysis Classification Approaches. In Advances in parallel computing. Elsevier BV. https://doi.org/10.3233/apc210175 DOI: https://doi.org/10.3233/APC210175
Fan, S., Yao, J., Sun, Y., & Zhan, Y. (2020). A Summary of Aspect-based Sentiment Analysis. In Journal of Physics Conference Series (Vol. 1624, Issue 2, p. 22051). IOP Publishing. https://doi.org/10.1088/1742-6596/1624/2/022051 DOI: https://doi.org/10.1088/1742-6596/1624/2/022051
Ha, H. D., Prasad, P., Maag, A., &Alsadoon, A. (2018). Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review [Review of Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review]. Expert Systems with Applications, 118, 272. Elsevier BV. https://doi.org/10.1016/j.eswa.2018.10.003 DOI: https://doi.org/10.1016/j.eswa.2018.10.003
Mohammad AA, Shelash SI, Saber TI, Vasudevan A, Darwazeh NR, Almajali R. Internal audit governance factors and their effect on the risk-based auditing adoption of commercial banks in Jordan [Internet]. Vol. 4, Data and Metadata; 2025 [cited 2025 Feb]. P. 464. DOI: https://doi.org/10.56294/dm2025464
Mohammad, S. M. (2020). Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other Affectual States from Text. In arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arxiv.2005.11882
Che, S., Zhu, W., & Li, X. (2020). Anticipating Corporate Financial Performance from CEO Letters Utilizing Sentiment Analysis. In Mathematical Problems in Engineering (Vol. 2020, p. 1). Hindawi Publishing Corporation. https://doi.org/10.1155/2020/5609272 DOI: https://doi.org/10.1155/2020/5609272
Galdolage BS, Ekanayake EA, Al-Daoud KI, Vasudevan A, Wenchang C, Hunitie MFA, Mohammad SIS. Sustainable Marine and Coastal Tourism: A Catalyst for Blue Economic Expansion in Sri Lanka [Internet]. Vol. 3, Journal of Ecohumanism; 2024 [cited 2025 Feb]. P. 1214. DOI: https://doi.org/10.62754/joe.v3i6.4098
Hwang, J., & Zhao, J. (2010). Factors Influencing Customer Satisfaction or Dissatisfaction in the Restaurant Business Using AnswerTree Methodology. In Journal of Quality Assurance in Hospitality & Tourism (Vol. 11, Issue 2, p. 93). Taylor & Francis. https://doi.org/10.1080/15280081003800355 DOI: https://doi.org/10.1080/15280081003800355
Mohammad SIS, Al-Daoud KI, Al Oraini BS, Alqahtani MM, Vasudevan A, Ali I. Impact of Crude Oil Price Volatility on Procurement and Inventory Strategies in the Middle East [Internet]. Vol. 15, International Journal of Energy Economics and Policy; 2025 [cited 2025 Feb]. P. 715. DOI: https://doi.org/10.32479/ijeep.18950
Park, S., Lee, J., & Nicolau, J. L. (2020). Understanding the dynamics of the quality of airline service attributes: Satisfiers and dissatisfiers. In Tourism Management (Vol. 81, p. 104163). Elsevier BV. https://doi.org/10.1016/j.tourman.2020.104163 DOI: https://doi.org/10.1016/j.tourman.2020.104163
Parasuraman, A. (2004). Assessing and improving service performancefor maximum impact: insights from a two‐decade‐long research journey. In Performance Measurement and Metrics (Vol. 5, Issue 2, p. 45). Emerald Publishing Limited. https://doi.org/10.1108/14678040410546064 DOI: https://doi.org/10.1108/14678040410546064
Namkung, Y., & Jang, S. (2008). Are highly satisfied restaurant customers really different? A quality perception perspective. In International Journal of Contemporary Hospitality Management (Vol. 20, Issue 2, p. 142). Emerald Publishing Limited. https://doi.org/10.1108/09596110810852131 DOI: https://doi.org/10.1108/09596110810852131
Park, K., Cha, M., & Rhim, E. (2018). Positivity Bias in Customer Satisfaction Ratings (p. 631). https://doi.org/10.1145/3184558.3186579 DOI: https://doi.org/10.1145/3184558.3186579
Bhakat, A., & Bhardwaj, R. (2024). Food and beverage service training in hospitality schools—An overview through the eyes of students, faculty, and industry professionals. In Smart Tourism (p. 2169). https://doi.org/10.54517/st2169 DOI: https://doi.org/10.54517/st2169
Ekanayake EA, Al-Daoud KI, Vasudevan A, Wenchang C, Hunitie MFA, Mohammad SIS. Leveraging Aquaculture and Mariculture for Sustainable Economic Growth in Sri Lanka: Challenges and Opportunities [Internet]. Vol. 3, Journal of Ecohumanism; 2024 [cited 2025 Feb]. P. 1229. DOI: https://doi.org/10.62754/joe.v3i6.4099
Azman, A. B., & Majid, M. A. A. (2023). Factors Affecting Customer Preference in Selecting Family Restaurant in Langkawi. In International Journal of Academic Research in Business and Social Sciences (Vol. 13, Issue 5). https://doi.org/10.6007/ijarbss/v13-i5/17013 DOI: https://doi.org/10.6007/IJARBSS/v13-i5/17013
Rita, P., Vong, C., Pinheiro, F. L., & Mimoso, J. (2022). A sentiment analysis of Michelin-starred restaurants. In European Journal of Management and Business Economics (Vol. 32, Issue 3, p. 276). Emerald Publishing Limited. https://doi.org/10.1108/ejmbe-11-2021-0295 DOI: https://doi.org/10.1108/EJMBE-11-2021-0295
Pleerux, N., &Nardkulpat, A. (2023). Sentiment analysis of restaurant customer satisfaction during COVID-19 pandemic in Pattaya, Thailand. In Heliyon (Vol. 9, Issue 11). Elsevier BV. https://doi.org/10.1016/j.heliyon.2023.e22193 DOI: https://doi.org/10.1016/j.heliyon.2023.e22193
Bacon, D. R., Besharat, A., Parsa, H. G., & Smith, S. (2016). Revenue management, hedonic pricing models and the effects of operational attributes. In International Journal of Revenue Management (Vol. 9, p. 147). Inderscience Publishers. https://doi.org/10.1504/ijrm.2016.077031 DOI: https://doi.org/10.1504/IJRM.2016.077031
Vuong, N. B., Suzuki, Y., & To, A. T. (2021). The Local Impact on the Concurrent Sentiment-Return Nexus: Asian versus European Markets. In Emerging Science Journal (Vol. 5, Issue 6, p. 894). https://doi.org/10.28991/esj-2021-01318 DOI: https://doi.org/10.28991/esj-2021-01318
Chen W, Vasudevan A, Al-Daoud KI, Mohammad SIS, Arumugam V, Manoharan T, Foong WS. Integrating cultures, enhancing outcomes: Perceived organizational support and its impact on Chinese expatriates' performance in Dubai [Internet]. Vol. 7, Herança; 2024 [cited 2025 Feb]. P. 25. DOI: https://doi.org/10.52152/heranca.v7i3.1066
Gao, B., Wang, J., Xiaojie, D., & Guo, Y. (2022). Perils of Review Solicitation: Evidence from a Natural Experiment on Tripadvisor. In SSRN Electronic Journal. RELX Group (Netherlands). https://doi.org/10.2139/ssrn.4012300 DOI: https://doi.org/10.2139/ssrn.4012300
Shakeel, M., Barsaiyan, S., &Sijoria, C. (2020). TWITTER AS A CUSTOMER SERVICE MANAGEMENT PLATFORM: A STUDY ON INDIAN BANKS. In Journal of Content Community and Communication (Vol. 11, Issue 10, p. 84). https://doi.org/10.31620/jccc.06.20/07 DOI: https://doi.org/10.31620/JCCC.06.20/07
Schoenmueller, V., Netzer, O., & Stahl, F. (2020). The Polarity of Online Reviews: Prevalence, Drivers and Implications. In Journal of Marketing Research (Vol. 57, Issue 5, p. 853). SAGE Publishing. https://doi.org/10.1177/0022243720941832 DOI: https://doi.org/10.1177/0022243720941832
Vargo, C. J., Gangadharbatla, H., & Hopp, T. (2019). eWOM across channels: comparing the impact of self-enhancement, positivity bias and vengeance on Facebook and Twitter. In International Journal of Advertising (Vol. 38, Issue 8, p. 1153). Taylor & Francis. https://doi.org/10.1080/02650487.2019.1593720 DOI: https://doi.org/10.1080/02650487.2019.1593720
Dewanthi, D. S., Praga, N. A., & Godwin, G. (2024). Cafe Visitation in the Digital Age: The Role of Social Media Reviews (p. 1). https://doi.org/10.1109/iccit62134.2024.10701207 DOI: https://doi.org/10.1109/ICCIT62134.2024.10701207
Kukreti, A., Kaur, A., Altaf, O., & Adil, M. (2024). Travel Industry: Comparison of Travel Review for Ease in Making Travel Decision. In SSRN Electronic Journal. RELX Group (Netherlands). https://doi.org/10.2139/ssrn.4488030 DOI: https://doi.org/10.2139/ssrn.4488030
Shin, S., Shin, H. H., Lee, E., &Yhee, Y. (2024). EXPRESS: Do Repeat Customers Effectively Attract New Customers? Reconsidering Customer Influence Value of Repeat Customers. In Journal of Hospitality & Tourism Research. SAGE Publishing. https://doi.org/10.1177/10963480241277093 DOI: https://doi.org/10.1177/10963480241277093
Messner, W. (2020). Cultural and Individual Differences in Online Reviews. In Journal of International Consumer Marketing (Vol. 32, Issue 5, p. 356). Taylor & Francis. https://doi.org/10.1080/08961530.2020.1722980 DOI: https://doi.org/10.1080/08961530.2020.1722980
Qiao, T., Shan, W., Zhang, M., & Wei, Z. (2022). More than words: Understanding how valence and content affect review value. In International Journal of Hospitality Management (Vol. 105, p. 103274). Elsevier BV. https://doi.org/10.1016/j.ijhm.2022.103274 DOI: https://doi.org/10.1016/j.ijhm.2022.103274
Roy, G. (2023). Travelers’ online review on hotel performance – Analyzing facts with the Theory of Lodging and sentiment analysis. In International Journal of Hospitality Management (Vol. 111, p. 103459). Elsevier BV. https://doi.org/10.1016/j.ijhm.2023.103459 DOI: https://doi.org/10.1016/j.ijhm.2023.103459
Li, N., Ariffin, S. Z. B. M., & Jamaluddin, N. S. (2024). An Analysis of the Impact of Xi’an Hotels’ Service Quality Using network Text. In Pakistan Journal of Life and Social Sciences (PJLSS) (Vol. 22, Issue 2). https://doi.org/10.57239/pjlss-2024-22.2.00269 DOI: https://doi.org/10.57239/PJLSS-2024-22.2.00269
Xia, Y., & Ha, H. (2022). Do Online Reviews Encourage Customers to Write Online Reviews? A Longitudinal Study. In Sustainability (Vol. 14, Issue 8, p. 4612). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su14084612 DOI: https://doi.org/10.3390/su14084612
Xu, X. (2022). A growing or depreciating love? Linking time with customer satisfaction through online reviews. In Information & Management (Vol. 59, Issue 2, p. 103605). Elsevier BV. https://doi.org/10.1016/j.im.2022.103605 DOI: https://doi.org/10.1016/j.im.2022.103605
Varnalı, K., &Cesmeci, C. (2021). Customer responses to service failures on social media. In Journal of Services Marketing (Vol. 36, Issue 5, p. 691). Emerald Publishing Limited. https://doi.org/10.1108/jsm-11-2020-0484 DOI: https://doi.org/10.1108/JSM-11-2020-0484
Cho, S., Pekgün, P., Janakiraman, R., & Wang, J. (2023). The Competitive Effects of Online Reviews on Hotel Demand. In Journal of Marketing (Vol. 88, Issue 2, p. 40). SAGE Publishing. https://doi.org/10.1177/00222429231191449 DOI: https://doi.org/10.1177/00222429231191449
Wu, J., Ye, J., & Chu, J. (2024). Soothing the Unsatisfied or Pleasing the Satisfied? The Effects of Managerial Responses to Positive versus Negative Reviews on Customer Ratings and Financial Performance. In SSRN Electronic Journal. RELX Group (Netherlands). https://doi.org/10.2139/ssrn.4708209 DOI: https://doi.org/10.2139/ssrn.4708209
Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence, machine learning, and deep learning for sentiment analysis in business to enhance customer experience, loyalty, and satisfaction. In SSRN Electronic Journal. RELX Group (Netherlands). https://doi.org/10.2139/ssrn.4846145 DOI: https://doi.org/10.2139/ssrn.4846145
Harmanpreet, B., Harikrishna, G. N., & Dhulipalla, I. (2023). NLP for sentiment analysis, customer service automation, and market trend predictions. In International Journal of Science and Research Archive (Vol. 10, Issue 1, p. 1084). https://doi.org/10.30574/ijsra.2023.10.1.0698 DOI: https://doi.org/10.30574/ijsra.2023.10.1.0698
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anber AbraheemShlash Mohammad, Ammar Mohammad Al-Ramadan, Suleiman Ibrahim Mohammad, Badrea Al Oraini, Asokan Vasudevan, Nawaf Alshdaifat, Mohammad Faleh Ahmmad Hunitie (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.

