The Effects of (rs3765467) polymorphism in the gene encoding GLPR1 on Serum GLP1 Level and Response to Sitagliptin in Combination with Metformin Therapy in Iraqi Type 2 Diabetics Patients

Authors

DOI:

https://doi.org/10.56294/dm2025927

Keywords:

Gene polymorphism, GLP1R, GLP 1, DPP 4 inhibitor, Sitagliptin, SNP

Abstract

The dipepdityl peptidase-4 (DPP-4) inhibitors, which prevent incretin degradation, have become popular oral hypoglycemic agents for type 2 diabetes. Despite the wide use of DPP-4 inhibitors, little is known of clinical and pharmacogenomics factors that specifically associated with DPP-4 inhibitor treatment response. Meanwhile, a genetics studies identify important factors involved in the progression of diabetes disease, and identify individuals at risk of developing T2DM. Purpose of present study is to assess the possible association of (rs3765467) polymorphism in the gene encoding GLP1R with serum level of GLP1 and glycemic response for the treatment with sitagliptin in combination with metformin in Iraqi diabetic patients. The results indicated that SNP (rs3765467) was not detected in our study population of 90 individuals. However, Sanger sequencing had successfully identified three SNPs for the study population, including rs3765466, rs910163& (rs910162), located within the same region of the target SNP, rs3765467, in the gene encoding GLP1R. Furthermore, these SNPs (rs3765466), (rs910163) & (rs910162) show no significant effect on the response to the treatment based on HbAIc level (patients with HbA1c of less than or equal to 7.0% are classified as clinical responders, while those with HbA1c greater than 7.0% are classified as non-responders), but these SNPs significantly affect the serum GLP1 level. Additionally, (rs910163) & (rs910162) genotypes were significantly associated with serum creatinine levels, suggesting a potential role of the (rs910163) & (rs910162) variant in renal function regulation.

 

References

Qin M, Chao L, Liu S. Comparative efficacy and safety of sitagliptin or gliclazide combined with metformin in treatment-naive patients with type 2 diabetes: A randomized study with genetic polymorphism analysis. Medicine (Baltimore). 2025;104(2):e41061. doi: https://doi.org/10.1097/MD.0000000000041061. DOI: https://doi.org/10.1097/MD.0000000000041061

Fang Y, Song W, Wei L. GLP1R rs3765467 polymorphism is associated with the risk of early-onset type 2 diabetes. J Diabetes Res. 2023;2023:1054192. doi: https://doi.org/10.1155/2023/1054192. DOI: https://doi.org/10.1155/2023/8729242

Klen J, Dolžan V. GLP-1 receptor agonists in type 2 diabetes management: Pharmacology and genetic factors. Int J Mol Sci. 2022;23(7):3451. doi: https://doi.org/10.3390/ijms23073451. DOI: https://doi.org/10.3390/ijms23073451

Ma X, Lu R, Gu N, et al. GLP-1R gene polymorphisms and coronary artery disease risk in Chinese Han with type 2 diabetes. J Diabetes Res. 2018;2018:1054192. doi: https://doi.org/10.1155/2018/1054192. DOI: https://doi.org/10.1155/2018/1054192

de Luis DA, Aller R, Izaola O, et al. rs6923761 variant in GLP-1 receptor and cardiovascular/metabolic parameters in obesity. Nutr Hosp. 2014;29(4):889-893. doi: https://doi.org/10.3305/nh.2014.29.4.7165.

de Luis DA, Aller R, Izaola O, et al. GLP1R rs6923761 and metabolic response to hypocaloric diet. J Endocrinol Invest. 2014;37(9):935-939. doi: https://doi.org/10.1007/s40618-014-0116-3. DOI: https://doi.org/10.1007/s40618-014-0117-2

de Luis DA, Aller R, Izaola O, et al. Cardiovascular risk after diets in obese patients with GLP1R rs6923761. J Endocrinol Invest. 2014;37(9):853-859. doi: https://doi.org/10.1007/s40618-014-0116-3. DOI: https://doi.org/10.1007/s40618-014-0116-3

de Luis DA, Pacheco D, Aller R, Izaola O. rs6923761 GLP1R variant and CV risk post-biliopancreatic diversion. Ann Nutr Metab. 2014;65(4):259-263. doi: https://doi.org/10.1159/000365438. DOI: https://doi.org/10.1159/000365975

Terranegra A, Arcidiacono T, Macrina L, et al. GLP1R and sarcoglycan delta variants and cardiovascular risk in dialysis. Clin Kidney J. 2020;13(4):666-673. doi: https://doi.org/10.1093/ckj/sfz123. DOI: https://doi.org/10.1093/ckj/sfz182

Zhang F, Tong Y, Su N, et al. GLP-1 mimetics and weight loss in non-diabetic overweight adults: Meta-analysis. J Diabetes. 2014;7(3):329-339. doi: https://doi.org/10.1111/1753-0407.12238. DOI: https://doi.org/10.1111/1753-0407.12198

Vilsbøll T, Christensen M, Junker AE, et al. GLP-1 receptor agonists and weight loss: Meta-analyses. BMJ. 2012;344:d7771. doi: https://doi.org/10.1136/bmj.d7771. DOI: https://doi.org/10.1136/bmj.d7771

Htike ZZ, Zaccardi F, Papamargaritis D, et al. GLP1R agonists in type 2 diabetes: Mixed-treatment analysis. Diabetes Obes Metab. 2017;19(4):524-536. doi: https://doi.org/10.1111/dom.12849. DOI: https://doi.org/10.1111/dom.12849

Heo CU, Choi CI. Genetics and pharmacogenomics in type 2 diabetes treatment. Pharmaceutics. 2021;13(5):670. doi: https://doi.org/10.3390/pharmaceutics13050670. DOI: https://doi.org/10.3390/pharmaceutics13050670

Yabe D, Seino Y. Incretin signaling in type 2 diabetes: Genetic insights. Endocr J. 2020;67(6):579-589. doi: https://doi.org/10.1507/endocrj.EJ20-0063. DOI: https://doi.org/10.1507/endocrj.EJ20-0063

Zhou Y, Han J, Xu J, et al. GLP-1 receptor polymorphisms and antidiabetic drug response: Review. Pharmacogenomics J. 2019;19(6):528-538. doi: https://doi.org/10.1038/s41397-019-0092-7.

Zhang Z, Zhang Y, Zhang Y, et al. Cardiovascular risk and GLP-1 receptor agonists: Genetic variability. Cardiovasc Diabetol. 2018;17(1):108. doi: https://doi.org/10.1186/s12933-018-0741-1.

Ahrén B, Pacini G. GLP-1 receptor polymorphisms and diabetes therapy outcomes. Trends Endocrinol Metab. 2021;32(4):266-275. doi: https://doi.org/10.1016/j.tem.2021.01.006. DOI: https://doi.org/10.1016/j.tem.2021.01.006

Baggio LL, Drucker DJ. Incretin hormone mechanisms and pharmacology. Gastroenterology. 2007;132(6):2131-2157. doi: https://doi.org/10.1053/j.gastro.2007.03.054. DOI: https://doi.org/10.1053/j.gastro.2007.03.054

Trujillo JM, Nuffer W. GLP-1 receptor agonists: Head-to-head trials in type 2 diabetes. Ther Adv Endocrinol Metab. 2014;5(1):19-28. doi: https://doi.org/10.1177/2042018814524224. DOI: https://doi.org/10.1177/2042018814559725

Ji G, Zhu L, Zhu S. GLP1R rs3765467/rs10305492 and β-cell insulin function. DNA Cell Biol. 2020;39(9):1700-1710. doi: https://doi.org/10.1089/dna.2020.5424. DOI: https://doi.org/10.1089/dna.2020.5424

Guan Z, Du Y, Li R, et al. GLP-1R polymorphism and response to GLP1R agonists in China. Eur J Clin Pharmacol. 2022;78(5):793-799. doi: https://doi.org/10.1007/s00228-021-03249-z. DOI: https://doi.org/10.1007/s00228-021-03249-z

Li Y, Yang Z, Ren S, et al. GLP-1R polymorphism and dyslipidemia in type 2 diabetes. Gene. 2023;878:147589. doi: https://doi.org/10.1016/j.gene.2023.147589. DOI: https://doi.org/10.1016/j.gene.2023.147589

Qiu X, Huang Y, Cen L, et al. GLP-1R polymorphisms and Parkinson’s disease risk. Neurosci Lett. 2020;728:135004. doi: https://doi.org/10.1016/j.neulet.2020.135004. DOI: https://doi.org/10.1016/j.neulet.2020.135004

de Luis DA, Diaz Soto G, Izaola O, Romero E. Liraglutide therapy in diabetics and GLP1R RS6923761. J Diabetes Complications. 2015;29(4):595-598. doi: https://doi.org/10.1016/j.jdiacomp.2015.03.005. DOI: https://doi.org/10.1016/j.jdiacomp.2015.02.010

de Luis DA, Bachiller R, Izaola O, de la Fuente B, Aller R. rs6923761 variant and metabolic syndrome in obesity. Ann Nutr Metab. 2014;65(4):253-258. doi: https://doi.org/10.1159/000365437. DOI: https://doi.org/10.1159/000365295

Javorsky M, Gotthardova I, Klimcakova L, et al. Missense GLP1R variant and gliptin response. Diabetes Obes Metab. 2016;18(9):941-944. doi: https://doi.org/10.1111/dom.12684. DOI: https://doi.org/10.1111/dom.12682

Abd Aliwie AN. A Pragmatic Analysis of Wish Strategies Used by Iraqi EFL Learners. Salud, Ciencia y Tecnología - Serie de Conferencias [Internet]. 2024 Aug. 12 [cited 2024 Sep. 6];3:.1151. Available from: https://conferencias.ageditor.ar/index.php/sctconf/article/view/1151 DOI: https://doi.org/10.56294/sctconf2024.1151

Aliwie, A.N.A., 2024. A Pragmatic Study of Irony in Dickens’ ‘A Tale of Two Cities’. Forum for Linguistic Studies. 6(6): 147–161. DOI: https://doi.org/10.30564/fls.v6i6.7056 DOI: https://doi.org/10.30564/fls.v6i6.7056

Abd Aliwie, A.N., 2025. A Pragmatic Analysis of Persuasive Arguments in the 2011–2020 US Presidential Campaign Speeches. Forum for Linguistic Studies. 7(1): 480–494. DOI: https://doi.org/10.30564/fls.v7i1.7243 DOI: https://doi.org/10.30564/fls.v7i1.7243

Abd Aliwie, A. N. (2025). Conversational Silence in Harold Pinter’s The Birthday Party: A Pragmatic Perspective. International Journal of Arabic-English Studies. https://doi.org/10.33806/ijaes.v25i2.860 DOI: https://doi.org/10.33806/ijaes.v25i2.860

Urgeova A, Javorsky M, Klimcakova L, et al. GLP1R variants and response to DPP-4 inhibitors. Pharmacogenomics. 2020;21(5):317-323. doi: https://doi.org/10.2217/pgs-2019-0174. DOI: https://doi.org/10.2217/pgs-2019-0147

Nunez DJ, Bush MA, Collins DA, et al. GLP1 and sitagliptin pharmacodynamics in type 2 diabetes. PLoS One. 2014;9(4):e92494. doi: https://doi.org/10.1371/journal.pone.0092494. DOI: https://doi.org/10.1371/journal.pone.0092494

Dorsey-Trevino EG. GLP1R variants and acute response to metformin and glipizide. Harvard Med Sch. 2021. doi: https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368019.

Aroda VR, Henry RR, Han J, et al. Efficacy and tolerability of GLP-1 receptor agonists in type 2 diabetes. Diabetes Care. 2009;32(1):84-90. doi: https://doi.org/10.2337/dc08-0677. DOI: https://doi.org/10.2337/dc08-0677

Bergenstal RM, Wysham C, MacConell L, et al. Efficacy of once-weekly GLP-1 receptor agonist therapy. Lancet. 2010;374(9686):39-47. doi: https://doi.org/10.1016/S0140-6736(09)61526-1.

Drucker DJ, Sherman SI, Gorelick FS, et al. Incretin-based therapies and safety controversies. Gastroenterology. 2010;139(3):746-759. doi: https://doi.org/10.1053/j.gastro.2010.06.015. DOI: https://doi.org/10.1053/j.gastro.2010.06.015

Nauck MA, Meier JJ. Incretin hormones: Their role and application. Diabetologia. 2018;61(3):441-445. doi: https://doi.org/10.1007/s00125-017-4506-z.

Nauck MA, Quast DR, Wefers J, et al. GLP-1 receptor agonists and SGLT2 inhibitors in type 2 diabetes therapy. Diabetes Metab Syndr Obes. 2021;14:683-698. doi: https://doi.org/10.2147/DMSO.S241136.

Lee YS, Jun HS. Anti-diabetic actions of GLP-1 and its analogs. Mol Cells. 2014;37(2):90-98. doi: https://doi.org/10.14348/molcells.2014.2372.

Buse JB, Henry RR, Han J, et al. Effects of exenatide on glycemic control and weight. Diabetes Care. 2004;27(11):2628-2635. doi: https://doi.org/10.2337/diacare.27.11.2628. DOI: https://doi.org/10.2337/diacare.27.11.2628

Bailey CJ, Day C. Metformin: Its properties and mechanisms. Diabetes Care. 1989;12(6):557-562. doi: https://doi.org/10.2337/diacare.12.6.557. DOI: https://doi.org/10.2337/diacare.12.8.553

Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes. Diabetes Care. 2012;35(6):1364-1379. doi: https://doi.org/10.2337/dc12-0413. DOI: https://doi.org/10.2337/dc12-0413

Weng J, Li Y, Xu W, et al. Early insulin initiation improves beta-cell function in newly diagnosed type 2 diabetes. Lancet. 2008;371(9626):1753-1760. doi: https://doi.org/10.1016/S0140-6736(08)60762-X. DOI: https://doi.org/10.1016/S0140-6736(08)60762-X

UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control and diabetes complications. Lancet. 1998;352(9131):837-853. doi: https://doi.org/10.1016/S0140-6736(98)07019-6. DOI: https://doi.org/10.1016/S0140-6736(98)07019-6

Alobaidi ZA, Mohammed SI. Olanzapine-induced metabolic syndrome and its association with -759C>T polymorphism of the HTR2C gene in Iraqi schizophrenic patients. Iraqi J Pharm Sci. 2024;33(3):37–46. DOI: https://doi.org/10.31351/vol33iss3pp37-46

Mohammed SI, Jasim AL. Genetic polymorphisms associated with diabetic foot ulcer: a review article. Asian J Pharm Pharmacol. 2020;6(4):798–805. DOI: https://doi.org/10.31024/ajpp.2020.6.4.8

Khadim DN, Mohammed SI. Genetic polymorphisms at TNF-alpha receptors associated with some autoimmune diseases and response to anti-TNF biologics: a review. Iraqi J Pharm Sci. 2024;33(4):49–58. DOI: https://doi.org/10.31351/vol33iss4pp49-58

Mohammed SI, Zalzala MH, Gorial FI. The effect of TNF-alpha gene polymorphisms at -376 G/A, -806 C/T, and -1031 T/C on the likelihood of becoming a non-responder to etanercept in a sample of Iraqi rheumatoid arthritis patients. Iraqi J Pharm Sci. 2022;31(2):113–28. DOI: https://doi.org/10.31351/vol31iss2pp113-128

Alobaidi ZA, Mohammed SI. The association between -697C>G and -997G>A polymorphisms of the HTR2C gene and the metabolic syndrome in Iraqi schizophrenic patients. J Popul Ther Clin Pharmacol. 2023;30(9):271–82. https://doi.org/10.47750/jptcp.2023.30.09.027 DOI: https://doi.org/10.47750/jptcp.2023.30.09.027

Al-Jalehawi AK, Mohammed SI. Clinical use of tumor necrosis factor-alpha inhibitors in Iraq: a review of their documented efficacy, safety, and associated genetics. Rev Clin Pharmacol Pharmacokinet Int Ed. 2024;38(3):335–46. https://doi.org/10.61873/SEZR6390 DOI: https://doi.org/10.61873/SEZR6390

Downloads

Published

2025-04-13

Issue

Section

Original

How to Cite

1.
Ahmed Attiyah Z, H. ALI S, Tuama Obaid A. The Effects of (rs3765467) polymorphism in the gene encoding GLPR1 on Serum GLP1 Level and Response to Sitagliptin in Combination with Metformin Therapy in Iraqi Type 2 Diabetics Patients. Data and Metadata [Internet]. 2025 Apr. 13 [cited 2026 Feb. 14];4:927. Available from: https://dm.ageditor.ar/index.php/dm/article/view/927